高中數(shù)學(xué) 第二章 點、直線、平面之間的位置關(guān)系質(zhì)量評估檢測 人教A版必修2
《高中數(shù)學(xué) 第二章 點、直線、平面之間的位置關(guān)系質(zhì)量評估檢測 人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 點、直線、平面之間的位置關(guān)系質(zhì)量評估檢測 人教A版必修2(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 高中數(shù)學(xué) 第二章 點、直線、平面之間的位置關(guān)系質(zhì)量評估檢測 新人教A版必修2 時間:120分鐘 滿分:150分 一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的. 1.下列說法不正確的是( ) A.空間中,一組對邊平行且相等的四邊形一定是平行四邊形 B.同一平面的兩條垂線一定共面 C.過直線上一點可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一平面內(nèi) D.過一條直線有且只有一個平面與已知平面垂直 解析:如圖所示,在正方體ABCD-A1B1C1D1中,AD⊥平面DCC1D1,因此平面ABCD
2、、平面AA1D1D均與平面DCC1D1垂直而且平面AA1D1D∩平面ABCD=AD,顯然選項D不正確,故選D. 答案:D 2.設(shè)a,b是兩條直線,α,β是兩個平面,若a∥α,a?β,α∩β=b,則α內(nèi)與b相交的直線與a的位置關(guān)系是( ) A.平行 B.相交 C.異面 D.平行或異面 解析:因為a∥α,a?β,α∩β=b, 所以a∥b.又因為a與α無公共點,所以α內(nèi)與b相交的直線與a異面. 答案:C 3.如圖,長方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1,AB,CC1的中點,則異面直線A1E與GF所成角為( ) A
3、.30° B.45° C.60° D.90° 解析: 連接EG,B1G,B1F, 則:A1E∥B1G, 故∠B1GF為異面直線A1E與GF所成的角. 由AA1=AB=2,AD=1可得B1G=,GF=,B1F=, ∴B1F2=B1G2+GF2,∴∠B1GF=90°,即異面直線A1E與GF所成的角為90°. 答案:D 4.下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的序號是( ) ① ② ③ ④ A.①③ B.①④ C.②③ D.②④ 解析: 如圖所示:平面ABC∥平面MNP,
4、 所以AB∥平面MNP, 故①正確. ④中易證NP∥AB,故AB∥平面MNP.②③不正確. 答案:B 5.設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( ) A.若α⊥β,m?α,n?β,則m⊥n B.若α∥β,m?α,n?β,則m∥n C.若m⊥n,m?α,n?β,則α⊥β D.若m⊥α,m∥n,n∥β,則α⊥β 解析: 如圖,在長方體ABCD-A1B1C1D1中,平面BCC1B1⊥平面ABCD,BC1?平面BCC1B1,BC?平面ABCD,而BC1不垂直于BC,故A錯誤. 平面A1B1C1D1∥平面ABCD,B1D1?平面A1B1C1D1,A
5、C?平面ABCD,但B1D1和AC不平行,故B錯誤. AB⊥A1D1,AB?平面ABCD,A1D1?平面A1B1C1D1,但平面A1B1C1D1∥平面ABCD,故C錯誤.故選D. 答案:D 6.設(shè)直線l?平面α,過平面α外一點A與l,α都成30°角的直線有且只有( ) A.1條 B.2條 C.3條 D.4條 解析:如圖,和α成30°角的直線一定是以A為頂點的圓錐的母線所在直線,當(dāng)∠ABC=∠ACB=30°,直線AC,AB都滿足條件,故選B. 答案:B 7.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為,底面積是邊長為的正三角形,若P為底面A1B1C1的中心,則
6、PA與平面ABC所成角的大小為( ) A. B. C. D. 解析:取正三角形ABC的中心O,連結(jié)OP,則∠PAO是PA與平面ABC所成的角. 因為底面邊長為,所以AD=×=,AO=AD=×=1.三棱柱的體積為×()2×AA1=,解得AA1=,即OP=AA1=,所以tan∠PAO==,即∠PAO=. 答案:B 8.已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值為( ) A. B. C. D. 解析:由題意知三棱錐A1-ABC為正四面體,設(shè)棱長為a,則AB1=a,棱柱的高A1O
7、===a(即點B1到底面ABC的距離),故AB1與底面ABC所成角的正弦值為=,故選B. 答案:B 9.在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為( ) A. B. C. D. 解析:取AC的中點E,CD的中點F,連接EF,BF,BE,∵AC=,其余各棱長都為1,∴AD⊥CD,∴EF⊥CD. 又∵BF⊥CD, ∴∠BFE是二面角A-CD-B的平面角. ∵EF=,BE=,BF=, ∴EF2+BE2=BF2.∴∠BEF=90°,∴cos∠BFE==,故選C. 答案:C 10.已知正四棱柱ABCD-A1B1C
8、1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( ) A. B. C. D. 解析:如圖,設(shè)AB=a,則AA1=2a,三棱錐C-BDC1的高為h,CD與平面BDC1所成的角為α. 因為VC-BDC1=VC1-BDC,即××a×ah=×a2×2a,解得h=a.所以sinα==. 答案:A 11.如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體ABCD,則在四面體ABCD中,下列結(jié)論正確的是( ) A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC
9、C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC 解析:易知:△BCD中,∠DBC=45°,∴∠BDC=90°, 又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD, 而AB⊥AD,∴AB⊥平面ACD,∴平面ABC⊥平面ACD. 答案:D 12.已知平面α⊥平面β,α∩β=l,在l上取線段AB=4,AC、BD分別在平面α和平面β內(nèi),且AC⊥AB,DB ⊥AB,AC=3,BD=12,則CD的長度為( ) A.13 B. C.12 D.15 解析: 如圖,連接AD. ∵α⊥β,∴AC⊥β,DB⊥α, 在Rt△ABD中, AD===. 在
10、Rt△CAD中,CD===13. 答案:A 二、填空題:本大題共4小題,每小題5分,共20分. 13.已知正方體ABCD-A1B1C1D1的棱長為1,點P是平面AA1D1D的中心,點Q是B1D1上一點,且PQ∥平面AB1D,則線段PQ長為________. 解析:連接AB1,AD1, 因為點P是平面AA1D1D的中心, 所以點P是AD1的中點, 因為PQ∥平面AB1,PQ?平面AB1D1,平面AB1D1∩平面AB1=AB1, 所以PQ∥AB1,所以PQ=AB1=. 答案: 14.在直四棱柱ABCD-A1B1C1D1中,當(dāng)?shù)酌嫠倪呅蜛1B1C1D1滿足條件________
11、時,有A1C⊥B1D1(注:填上你認為正確的一種情況即可,不必考慮所有可能的情況). 解析:由直四棱柱可知CC1⊥面A1B1C1D1,所以CC1⊥B1D1,要使B1D1⊥A1C,只要B1D1⊥平面A1CC1,所以只要B1D1⊥A1C1,還可以填寫四邊形A1B1C1D1是菱形,正方形等條件. 答案:B1D1⊥A1C1(答案不唯一) 15.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為BC的中點,點P在線段D1E上,點P到直線CC1上的距離的最小值為________. 解析:如圖,過點E作EE1⊥平面A1B1C1D1,交直線B1C1于點E1, 連接D1E1,DE,在平面D
12、1DEE1內(nèi)過點P作PH∥EE1交D1E1于點H,連接C1H,則C1H即為點P到直線CC1的距離.當(dāng)點P在線段D1E上運動時,點P到直線CC1的距離的最小值為點C1到線段D1E1的距離,即為△C1D1E1的邊D1E1上的高h. ∵C1D1=2,C1E1=1,∴D1E1=,∴h==. 答案: 16.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下三個結(jié)論. ①AC⊥BD; ②△ACD是等邊三角形; ③AB與平面BCD成60°的角; 說法正確的命題序號是________. 解析: 如圖所示,①取BD中點E,連接AE,CE,則BD⊥AE,BD⊥CE,而AE∩CE=E,∴
13、BD⊥平面AEC,AC?平面AEC,故AC⊥BD,故①正確. ②設(shè)正方形的邊長為a, 則AE=CE=a. 由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a, ∴△ACD是等邊三角形,故②正確. ③由題意及①知,AE⊥平面BCD,故∠ABE是AB與平面BCD所成的角,而∠ABE=45°,所以③不正確. 答案:①② 三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟. 17.(本小題滿分10分)如圖,正四棱錐S-ABCD的底面是邊長為a的正方形,側(cè)棱長是底面邊長的倍,O為底面對角線的交點,P為側(cè)棱SD上的點. (1
14、)求證:AC⊥SD; (2)F為SD中點,若SD⊥平面PAC,求證:BF∥平面PAC. 證明:(1)連接SO, ∵四邊形ABCD為正方形, ∴AC⊥BD且O為AC中點, 又∵SA=SC, ∴SO⊥AC, 又∵SO∩BD=O, ∴AC⊥平面SBD, 又∵SD?平面SBD, ∴AC⊥SD. (2)連接OP, ∵SD⊥平面ACP,OP?平面ACP, ∴OP⊥SD, 又△SBD中,BD=a=SB,且F為SD中點, ∴BF⊥SD, 因為OP、BF?平面BDF,所以O(shè)P∥BF, 又∵OP?平面ACP,BF?平面PAC, ∴BF∥平面PAC. 18.(本小題
15、滿分12分)如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點. 求證:(1)平面EFG∥平面ABC. (2)BC⊥SA. 證明:(1)因為AS=AB,AF⊥SB,垂足為F,所以F是SB的中點. 又因為E是SA的中點,所以EF∥AB. 因為EF?平面ABC,AB?平面ABC, 所以EF∥平面ABC. 同理EG∥平面ABC. 又因為EF∩EG=E, 所以平面EFG∥平面ABC. (2)因為平面SAB⊥平面SBC,且交線為SB,又因為AF?平面SAB,AF⊥SB, 所以AF⊥平面SBC,因為
16、BC?平面SBC, 所以AF⊥BC. 又因為AB⊥BC,AF∩AB=A,AF?平面SAB,AB?平面SAB,所以BC⊥平面SAB. 又因為SA?平面SAB,所以BC⊥SA. 19.(本小題滿分12分)如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE. (1)證明:BD⊥平面PAC; (2)若PA=1,AD=2,求二面角B-PC-A的正切值. 解析:(1)證明:∵PA⊥平面ABCD,∴PA⊥BD ∵PC⊥平面BDE, ∴PC⊥BD. ∴BD⊥平面PAC. (2)設(shè)AC與BD交點為O,連接OE. ∵PC⊥平
17、面BDE,∴PC⊥OE. 又∵BO⊥平面PAC, ∴PC⊥BO, ∴PC⊥平面BOE,∴PC⊥BE, ∴∠BEO為二面角B-PC-A的平面角. ∵BD⊥平面PAC, ∴BD⊥AC, ∴四邊形ABCD為正方形, ∴BO=. 在△PAC中,=?=?OE=, ∴tan∠BEO==3, ∴二面角B-PC-A的平面角的正切值為3. 20.(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. (1)證明:AB⊥A1C; (2)若AB=CB=2,A1C=,求三棱柱ABC-A1B1C1的體積. 解析:(1)取AB的中點O,連接
18、OC,OA1,A1B. 因為CA=CB,所以O(shè)C⊥AB. 由于AB=AA1,∠BAA1=60°,故△AA1B為等邊三角形, 所以O(shè)A1⊥AB. 因為OC∩OA1=O,所以AB⊥面OA1C. 又A1C?平面OA1C,故AB⊥A1C. (2)由題設(shè)知△ABC與△AA1B都是邊長為2的等邊三角形,所以O(shè)C=OA1=,又A1C=,則A1C2=OC2+OA,故OA1⊥OC. 因為OC∩AB=O,所以O(shè)A1⊥面ABC,OA1為三棱柱ABC-A1B1C1的高. 又S△ABC=AB·OC=,故三棱柱ABC-A1B1C1的體積V=S△ABC×OA1=×=3. 21.(本小題滿分12分)如圖
19、,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動. (1)證明:AD⊥C1E; (2)當(dāng)異面直線AC,C1E所成的角為60°時,求三棱錐C1-A1B1E的體積. 解析:(1)證明:因為AB=AC,D是BC的中點,所以AD⊥BC,① 又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC, 而AD?平面ABC,所以AD⊥BB1,② 由①②可得AD⊥平面BB1C1C,因為點E在棱BB1上運動. 得C1E?平面BB1C1C,所以AD⊥C1E. (2)因為AC∥A1C1,所以∠A1C1E是異面直線AC與C1E所成的角
20、,所以∠A1C1E=60°,因為∠B1A1C1=∠BAC=90°,所以A1C1⊥A1B1, 又AA1⊥A1C1,從而A1C1⊥平面A1ABB1,于是A1C1⊥A1E, 故C1E==2,又B1C1=2,所以B1E=2, 從而VC1-A1B1E=S△A1B1E×A1C1=××2××=. 22.(本小題滿分12分)如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面FB1C1E與直線AA1的交點. (1)證明:①EF∥A1D1; ②BA1⊥平面B1C1EF. (2)求BC1與平面B1C1EF
21、所成的角的正弦值. 解析:(1)證明:①由AD∥BC,BC∥B1C1可得AD∥B1C1, 又B1C1?平面AA1D1D,AD?平面AA1D1D, ∴B1C1∥平面AA1D1D, 又平面B1C1E∩平面AA1D1D=EF, ∴B1C1∥EF,又A1D1∥B1C1,∴EF∥A1D1. ②在Rt△FA1B1和Rt△A1B1B中,==, ∴Rt△FA1B1∽Rt△A1B1B, ∴∠A1FB1=∠BA1B1, ∵∠A1FB1+∠A1B1F=90°, ∴∠BA1B1+∠A1B1F=90°, ∴A1B⊥B1F, 由AD⊥AB可得B1C1⊥A1B1, 又B1C1⊥BB1, ∴B1C1⊥平面A1B1B, 又A1B?平面A1B1B,可得BA1⊥B1C1, 又BA1⊥B1F,且B1F∩B1C1=B1, ∴BA1⊥平面B1C1EF. (2)設(shè)A1B∩B1F=O,連接C1O, 由(1)可知BC1與平面B1C1EF所成的角為∠BC1O, 在Rt△A1B1B中,BB=BO·BA1, 即22=BO·,解得BO=, ∴sin∠BC1O===, ∴BC1與平面B1C1EF所成的角的正弦值為. 最新精品資料
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔(dān)當(dāng)時代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識培訓(xùn)冬季用電防火安全
- 2025加強政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會長長的路慢慢地走