《新編人教版高中數(shù)學(xué)選修11:2.2 雙 曲 線(xiàn) 課時(shí)提升作業(yè)十二 2.2.1 含解析》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編人教版高中數(shù)學(xué)選修11:2.2 雙 曲 線(xiàn) 課時(shí)提升作業(yè)十二 2.2.1 含解析(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編人教版精品教學(xué)資料
課時(shí)提升作業(yè)(十二)
雙曲線(xiàn)及其標(biāo)準(zhǔn)方程
(25分鐘 60分)
一、選擇題(每小題5分,共25分)
1.已知F1(-8,3),F2(2,3)為定點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足|PF1|-|PF2|=2a,當(dāng)a=3和a=5時(shí),P點(diǎn)的軌跡分別為( )
A.雙曲線(xiàn)和一條直線(xiàn)
B.雙曲線(xiàn)的一支和一條直線(xiàn)
C.雙曲線(xiàn)和一條射線(xiàn)
D.雙曲線(xiàn)的一支和一條射線(xiàn)
【解析】選D.易得|F1F2|=10.
當(dāng)a=3時(shí),2a=6,即2a<|F1F2|,
所以P點(diǎn)的軌跡為雙曲線(xiàn)的一支(靠近點(diǎn)F2).
當(dāng)a=5時(shí),2a=10,即2a=|F1F2|,此時(shí)P,F1,F2共線(xiàn).
所以P點(diǎn)的
2、軌跡是以F2為起點(diǎn)的一條射線(xiàn).
2.(2015·福建高考)若雙曲線(xiàn)E:x29-y216=1的左、右焦點(diǎn)分別為F1,F2,點(diǎn)P在雙曲線(xiàn)E上,且|PF1|=3,則|PF2|等于 ( )
A.11 B.9 C.5 D.3
【解析】選B.因?yàn)镻F1-PF2=2a,所以PF1-PF2=±6,所以PF2=9或-3(舍去).
3.在方程mx2-my2=n中,若mn<0,則方程的曲線(xiàn)是 ( )
A.焦點(diǎn)在x軸上的橢圓 B.焦點(diǎn)在x軸上的雙曲線(xiàn)
C.焦點(diǎn)在y軸上的橢圓 D.焦點(diǎn)在y軸上的雙曲線(xiàn)
【解析】選D.方程mx2-my2=n可化為:
y2-nm-x2-nm=1
3、,
因?yàn)閙n<0,所以-nm>0,
所以方程表示的曲線(xiàn)是焦點(diǎn)在y軸上的雙曲線(xiàn).
4.(2015·吉首高二檢測(cè))橢圓x24+y2m2=1與雙曲線(xiàn)x2m2-y22=1有相同的焦點(diǎn),則m的值是 ( )
A.±1 B.1 C.-1 D.不存在
【解析】選A.方法一:直接法:顯然雙曲線(xiàn)焦點(diǎn)在x軸上,
故4-m2=m2+2.
所以m2=1,即m=±1.
方法二:驗(yàn)證法:當(dāng)m=±1時(shí),m2=1,
對(duì)橢圓來(lái)說(shuō),a2=4,b2=1,c2=3.
對(duì)雙曲線(xiàn)來(lái)說(shuō),a2=1,b2=2,c2=3,
故當(dāng)m=±1時(shí),它們有相同的焦點(diǎn).
【誤區(qū)警示】本題在求解時(shí)常常因?yàn)榛煜龣E圓與雙曲線(xiàn)的
4、數(shù)量關(guān)系導(dǎo)致錯(cuò)誤.
5.(2015·三明高二檢測(cè))已知雙曲線(xiàn)的左、右焦點(diǎn)分別為F1,F2,過(guò)F1的直線(xiàn)與
雙曲線(xiàn)的左支交于A,B兩點(diǎn),線(xiàn)段AB的長(zhǎng)為5,若2a=8,那么△ABF2的周長(zhǎng)
是 ( )
A.16 B.18 C.21 D.26
【解題指南】借助雙曲線(xiàn)的定義求解,注意點(diǎn)A,B的位置.
【解析】選D.|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,所以|AF2|+|BF2|-(|AF1|+|BF1|)=16,
所以|AF2|+|BF2|=16+5=21,
所以△ABF2的周長(zhǎng)為|AF2|+|BF2|+|AB|=21+5=26.
二、填空
5、題(每小題5分,共15分)
6.已知點(diǎn)P(2,-3)是雙曲線(xiàn)x2a2-y2b2=1(a>0,b>0)上一點(diǎn),雙曲線(xiàn)兩個(gè)焦點(diǎn)間的距離等于4,則該雙曲線(xiàn)方程是 .
【解析】由題意知c=2,設(shè)該雙曲線(xiàn)方程是x2a2-y24-a2=1,
把點(diǎn)P(2,-3)代入,得4a2-94-a2=1,
解得a2=1或a2=16(舍).
所以該雙曲線(xiàn)方程為x2-y23=1.
答案:x2-y23=1
7.若雙曲線(xiàn)8kx2-ky2=8的一個(gè)焦點(diǎn)為(0,3),則k= .
【解題指南】先化雙曲線(xiàn)方程為標(biāo)準(zhǔn)形式,再借助a,b,c的關(guān)系求解.
【解析】方程可化為y2-8k-x2-1k=1,由焦點(diǎn)在y
6、軸上,得a2=-8k,b2=-1k.
所以c2=-9k,
所以9=-9k,
所以k=-1.
答案:-1
8.(2015·濰坊高二檢測(cè))已知雙曲線(xiàn)的兩個(gè)焦點(diǎn)F1(-5,0),F2(5,0),P是雙曲線(xiàn)上一點(diǎn),且PF1→·PF2→=0,|PF1|·|PF2|=2,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 .
【解析】由題意可設(shè)雙曲線(xiàn)方程為
x2a2-y2b2=1(a>0,b>0).
由PF1→·PF2→=0,得PF1⊥PF2.根據(jù)勾股定理得
|PF1|2+|PF2|2=(2c)2,即|PF1|2+|PF2|2=20.
根據(jù)雙曲線(xiàn)定義有|PF1|-|PF2|=±2a.
兩邊平方并代入|PF1
7、|·|PF2|=2得
20-2×2=4a2,解得a2=4,從而b2=5-4=1,
所以雙曲線(xiàn)方程為x24-y2=1.
答案:x24-y2=1
【拓展延伸】與雙曲線(xiàn)定義相關(guān)問(wèn)題的解法
利用雙曲線(xiàn)的定義解決與焦點(diǎn)有關(guān)的問(wèn)題,一是要注意定義條件||PF1|-|PF2||=2a的變形的使用,特別是與|PF1|2+|PF2|2,|PF1|·|PF2|間的關(guān)系;二是要與三角形知識(shí)相結(jié)合,如勾股定理、余弦定理、正弦定理等,同時(shí)要注意整體思想的應(yīng)用.
三、解答題(每小題10分,共20分)
9.根據(jù)下列條件,求雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
(1)過(guò)點(diǎn)P3,154,Q-163,5且焦點(diǎn)在坐標(biāo)軸上.
(2)
8、c=6,經(jīng)過(guò)點(diǎn)(-5,2),焦點(diǎn)在x軸上.
【解析】(1)設(shè)雙曲線(xiàn)方程為x2m-y2n=1,
因?yàn)镻,Q兩點(diǎn)在雙曲線(xiàn)上,
所以9m-22516n=1,2569m-25n=1解得m=-16,n=-9,
所以所求雙曲線(xiàn)方程為-x216+y29=1,即y29-x216=1.
(2)因?yàn)榻裹c(diǎn)在x軸上,c=6,
所以設(shè)所求雙曲線(xiàn)方程為x2λ-y26-λ=1(其中0<λ<6).
因?yàn)殡p曲線(xiàn)經(jīng)過(guò)點(diǎn)(-5,2),所以25λ-46-λ=1,
所以λ=5或λ=30(舍去),
所以所求雙曲線(xiàn)的方程是x25-y2=1.
10.在周長(zhǎng)為48的Rt△MPN中,∠MPN=90°,tan∠PMN=34,求
9、以M,N為焦點(diǎn),且過(guò)點(diǎn)P的雙曲線(xiàn)方程.
【解題指南】由雙曲線(xiàn)定義可知||PM|-|PN||=2a,|MN|=2c,所以利用條件確定
△MPN的邊長(zhǎng)是關(guān)鍵.
【解析】因?yàn)椤鱉PN的周長(zhǎng)為48,且tan∠PMN=34,所以設(shè)|PN|=3k,|PM|=4k,則|MN|=5k.
由3k+4k+5k=48得k=4.
所以|PN|=12,|PM|=16,|MN|=20.
以MN所在直線(xiàn)為x軸,以MN的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,如圖所示.
設(shè)所求雙曲線(xiàn)方程為x2a2-y2b2=1(a>0,b>0).
由|PM|-|PN|=4得2a=4,a=2,a2=4.
由|MN|=20得2c=20,c=
10、10.
所以b2=c2-a2=96,所以所求雙曲線(xiàn)方程為x24-y296=1.
(20分鐘 40分)
一、選擇題(每小題5分,共10分)
1.(2015·廣州高二檢測(cè))橢圓y249+x224=1與雙曲線(xiàn)y2-x224=1有公共點(diǎn)P,則P與雙曲線(xiàn)兩焦點(diǎn)連線(xiàn)構(gòu)成的三角形的面積為 ( )
A.48 B.24 C.243 D.123
【解析】選B.由已知得橢圓與雙曲線(xiàn)具有共同的焦點(diǎn)F1(0,5)和F2(0,-5),又由橢圓與雙曲線(xiàn)的定義可得
|PF1|+|PF2|=14,||PF1|-|PF2||=2,
所以|PF1|=8,|PF2|=6,或|PF1|=6,|PF2|=
11、8.
又|F1F2|=10,
所以△PF1F2為直角三角形,∠F1PF2=90°.
所以△PF1F2的面積
S=12|PF1||PF2|=12×6×8=24.
2.(2015·成都高二檢測(cè))若方程x2m-1+y2m2-4=3表示焦點(diǎn)在y軸上的雙曲線(xiàn),則m的取值范圍是 ( )
A.(1,2) B.(2,+∞)
C.(-∞,-2) D.(-2,2)
【解析】選C.由題意,方程可化為
y2m2-4-x21-m=3,
所以m2-4>0,1-m>0,解得m<-2.
二、填空題(每小題5分,共10分)
3.已知F是雙曲線(xiàn)x24-y212=1的左焦點(diǎn),A(1,4),
12、P是雙曲線(xiàn)右支上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為 .
【解題指南】借助雙曲線(xiàn)的定義,把|PF|+|PA|的最值問(wèn)題轉(zhuǎn)化為點(diǎn)共線(xiàn)問(wèn)題.
【解析】設(shè)右焦點(diǎn)為F1(4,0),依題意,
|PF|=|PF1|+4,
所以|PF|+|PA|=|PF1|+4+|PA|
=|PF1|+|PA|+4≥|AF1|+4=5+4=9.
答案:9
4.(2015·昆明高二檢測(cè))已知?jiǎng)訄AM與圓C1:(x+3)2+y2=9外切且與圓C2:(x-3)2+y2=1內(nèi)切,則動(dòng)圓圓心M的軌跡方程是 .
【解析】設(shè)動(dòng)圓M的半徑為r.
因?yàn)閯?dòng)圓M與圓C1外切且與圓C2內(nèi)切,
所以|MC1|=r+3
13、,|MC2|=r-1.
相減得|MC1|-|MC2|=4.
又因?yàn)镃1(-3,0),C2(3,0),并且|C1C2|=6>4,
所以點(diǎn)M的軌跡是以C1,C2為焦點(diǎn)的雙曲線(xiàn)的右支,
且有a=2,c=3.
所以b2=5,所以所求的軌跡方程為x24-y25=1(x≥2).
答案:x24-y25=1(x≥2)
【誤區(qū)警示】本題在求解時(shí)常常因?yàn)楹雎韵薅l件“x≥2”導(dǎo)致錯(cuò)誤.
三、解答題(每小題10分,共20分)
5.(2015·濟(jì)南高二檢測(cè))已知方程kx2+y2=4,其中k為實(shí)數(shù),對(duì)于不同范圍的k值分別指出方程所表示的曲線(xiàn)類(lèi)型.
【解題指南】解答本題可依據(jù)所學(xué)的各種曲線(xiàn)的標(biāo)準(zhǔn)形式
14、的系數(shù)應(yīng)滿(mǎn)足的條件進(jìn)行分類(lèi)討論.
【解析】(1)當(dāng)k=0時(shí),y=±2,表示兩條與x軸平行的直線(xiàn).
(2)當(dāng)k=1時(shí),方程為x2+y2=4,表示圓心在原點(diǎn),半徑為2的圓.
(3)當(dāng)k<0時(shí),方程為y24-x2-4k=1,表示焦點(diǎn)在y軸上的雙曲線(xiàn).
(4)當(dāng)01時(shí),方程為x24k+y24=1,表示焦點(diǎn)在y軸上的橢圓.
【補(bǔ)償訓(xùn)練】當(dāng)0°≤α≤180°時(shí),方程x2cosα+y2sinα=1表示的曲線(xiàn)如何變化?
【解析】(1)當(dāng)α=0°時(shí),方程為x2=1,它表示兩條平行直線(xiàn)x=±1.
(2)當(dāng)0°<α<90°
15、時(shí),方程為x21cosα+y21sinα=1.
①當(dāng)0°<α<45°時(shí),0<1cosα<1sinα,它表示焦點(diǎn)在y軸上的橢圓.
②當(dāng)α=45°時(shí),它表示圓x2+y2=2.
③當(dāng)45°<α<90°時(shí),1cosα>1sinα>0,它表示焦點(diǎn)在x軸上的橢圓.
(3)當(dāng)α=90°時(shí),方程為y2=1,它表示兩條平行直線(xiàn)y=±1.
(4)當(dāng)90°<α<180°時(shí),方程為y21sinα-x21-cosα=1,它表示焦點(diǎn)在y軸上的雙曲線(xiàn).
(5)當(dāng)α=180°時(shí),方程為x2=-1,它不表示任何曲線(xiàn).
6.已知定點(diǎn)A(0,7),B(0,-7),C(12,2),以C為一個(gè)焦點(diǎn)作過(guò)A,B的橢圓,求另一焦點(diǎn)F的軌跡方程.
【解析】設(shè)F(x,y)為軌跡上的任意一點(diǎn),
因?yàn)锳,B兩點(diǎn)在以C,F為焦點(diǎn)的橢圓上,
所以|FA|+|CA|=2a,|FB|+|CB|=2a(其中a表示橢圓的長(zhǎng)半軸長(zhǎng)),
所以|FA|+|CA|=|FB|+|CB|,
所以|FA|-|FB|=|CB|-|CA|
=122+92-122+52=2.
所以|FA|-|FB|=2.
由雙曲線(xiàn)的定義知,F點(diǎn)在以A、B為焦點(diǎn),2為實(shí)軸長(zhǎng)的雙曲線(xiàn)的下半支上,
所以點(diǎn)F的軌跡方程是y2-x248=1(y≤-1).
關(guān)閉Word文檔返回原板塊