欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8

上傳人:努力****83 文檔編號:65908498 上傳時間:2022-03-25 格式:DOC 頁數(shù):12 大?。?02KB
收藏 版權申訴 舉報 下載
高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8_第1頁
第1頁 / 共12頁
高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8_第2頁
第2頁 / 共12頁
高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8》由會員分享,可在線閱讀,更多相關《高考數(shù)學 17-18版 附加題部分 第2章 第64課 課時分層訓練8(12頁珍藏版)》請在裝配圖網上搜索。

1、 課時分層訓練(八) A組 基礎達標 (建議用時:30分鐘) 1.(2017·蘇州模擬)如圖64-10,在棱長為3的正方體ABCD-A1B1C1D1中,A1E=CF=1. 圖64-10 (1)求兩條異面直線AC1與D1E所成角的余弦值; (2)求直線AC1與平面BED1F所成角的正弦值. [解] ∵DA,DC,DD1兩兩垂直, ∴以DA,DC,DD1所在直線為x,y,z軸, 建立空間直角坐標系,如圖所示, ∵棱長為3,A1E=CF=1, 則D(0,0,0),A(3,0,0),B(3,3,0),C(0,3,0),D1(0,0,3),A1(3,0,3),B1(3,3,3

2、),C1(0,3,3),E(3,0,2),F(xiàn)(0,3,1), ∴=(-3,3,3),=(3,0,-1) ∴cos〈,〉==-.所以兩條異面直線AG與D1E所成的余弦值為-. (2)設平面BED1F的法向量是n=(x,y,z),又∵=(0,-3,2),=(-3,0,1), n⊥,n⊥,∴n·=n·=0, 即,令z=3,則x=1,y=2,所以n=(1,2,3),又=(-3,3,3), ∴cos〈,n〉==, ∴直線AC1與平面BED1F所成角是-〈,n〉, 它的正弦值是sin=cos〈,n〉=. 2.(2017·南京模擬)如圖64-11,已知正方形ABCD和矩形ACEF所在的平面

3、互相垂直,AB=,AF=1,M是線段EF的中點. 圖64-11 (1)求二面角A-DF-B的大小; (2)試在線段AC上確定一點P,使PF與BC所成的角是60°. 【導學號:62172344】 [解] (1)以,,為正交基底,建立空間直角坐標系, 則E(0,0,1),D(,0,0),F(xiàn)(,,1),B(0,,0),A(,,0),=(,-,0),=(,0,1).平面ADF的法向量t=(1,0,0), 設平面DFB法向量n=(a,b,c),則n·=0,n·=0, 所以令a=1,得b=1,c=-,所以n=(1,1,-). 設二面角A-DF-B的大小為θ, 從而cos θ=|c

4、os 〈n,t〉|=,∴θ=60°, 故二面角A-DF-B的大小為60°. (2)依題意,設P(a,a,0)(0≤a≤),則=(-a,-a,1),=(0,,0). 因為〈,〉=60°,所以cos 60°==,解得a=, 所以點P應在線段AC的中點處. 3.(2017·泰州期末)如圖64-12,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4. (1)設=λ,異面直線AC1與CD所成角的余弦值為,求λ的值; 圖64-12 (2)若點D是AB的中點,求二面角D-CB1-B的余弦值. [解] (1)由AC=3,BC=4,AB=5得∠ACB=90°,

5、以CA,CB,CC1所在直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標系.則A(3,0,0),C1(0,0,4),B(0,4,0),設D(x,y,z),則由=λ得=(3-3λ,4λ,0), 而=(-3,0,4), 根據(jù)=, 解得λ=或λ=-. (2)=,=(0,4,4),可取平面CDB1的一個法向量為n1=(4,-3,3). 而平面CBB1的一個法向量為n2=(1,0,0),并且〈n1n2〉與二面角D-CB1-B相等, 所以二面角D-CB1-B的余弦值為cos θ=cos〈n1,n2〉=. 4.(2017·揚州期中)如圖64-13,已知直三棱柱ABC-A1B1C1中,A

6、B⊥AC,AB=3,AC=4,B1C⊥AC1. 圖64-13 (1)求AA1的長. (2)在線段BB1存在點P,使得二面角P-A1C-A大小的余弦值為,求的值. 【導學號:62172345】 [解] (1)以AB,AC,AA1所在直線分別為x,y,z軸,建立如圖所示的空間直角坐標, 設BB1=t, 則A(0,0,0),C1(0,4,t),B1(3,0,t),C(0,4,0) ∴=(0,4,t), =(-3,4,-t) ∵B1C⊥AC1, ∴·=0, 即16-t2=0,由t>0,解得t=4,即AA1的長為4. (2)設P(3,0,m),又A(0,0,0),C(0,4,

7、0),A1(0,0,4) ∴=(0,4,-4),=(3,0,m-4),且0≤m≤4 設n=(x,y,z)為平面PA1C的法向量, ∴n⊥,n⊥, ∴取z=1,解得y=1,x=, ∴n=為平面PA1C的一個法向量. 又知=(3,0,0)為平面A1CA的一個法向量,則cos〈n,〉=. ∵二面角P-A1C1-A大小的余弦值為, ∴=, 解得m=1,∴=. B組 能力提升 (建議用時:15分鐘) 1.(2017·蘇州市期中)在如圖64-14所示的四棱錐S-ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一

8、個動點. 圖64-14 (1)證明DE和SC不可能垂直; (2)當點E為線段BS的三等分點(靠近B)時,求二面角S-CD-E的余弦值. [解] (1)證明:∵SA⊥底面ABCD,∠DAB=90°, ∴AB,AD,AS兩兩垂直. 以A為原點,AB,AD,AS所在的直線分別為x軸、y軸、z軸建立空間直角坐標系(如圖). 則S(0,0,a),C(a,a,0),D(0,3a,0)(a>0), ∵SA=AB=a且SA⊥AB, ∴設E(x,0,a-x)其中0≤x≤a, ∴=(x,-3a,a-x),=(a,a,-a), 假設DE和SC垂直,則·=0, 即ax-3a2-a2+a

9、x=2ax-4a2=0,解得x=2a, 這與0≤x≤a矛盾,假設不成立,所以DE和SC不可能垂直. (2)∵E為線段BS的三等分點(靠近B), ∴E. 設平面SCD的一個法向量是n1=(x1,y1,z1),平面CDE的一個法向量是n2=(x2,y2,z2), ∵=(-a,2a,0),=(0,3a,-a), ∴, 即,即,取n1=(2,1,3), ∵=(-a,2a,0), =, ∴,即, 即, 取n2=(2,1,5), 設二面角S-CD-E的平面角大小為θ,由圖可知θ為銳角, ∴cos θ=|cos〈n1,n2〉|===, 即二面角S-CD-E的余弦值為. 2.(

10、2017·南通模擬)如圖64-15,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=AD=1,PA⊥平面ABCD. 圖64-15 (1)求PB與平面PCD所成角的正弦值; (2)棱PD上是否存在一點E滿足∠AEC=90°?若存在 ,求AE的長;若不存在,說明理由. [解] (1)依題意,以A為坐標原點,分別以AB,AD,AP為x,y,z軸建立空間直角坐標系A-xyz, 則P(0,0,1),B(1,0,0),C(1,1,0),D(0,2,0), 從而=(1,0,-1),=(1,1,-1),=(0,2,-1), 設平面PCD的法向量

11、為n=(a,b,c),則n·=0,且n·=0,即a+b-c=0,且2b-c=0,不妨取c=2,則b=1,a=1,所以平面PCD的一個法向量為n=(1,1,2),此時cos〈,n〉==-, 所以PB與平面PCD所成角的正弦值為. (2)設=λ(0≤λ≤1),則E(0,2λ,1-λ), 則=(-1,2λ-1,1-λ),=(0,2λ,1-λ), 由∠AEC=90°得, ·=2λ(2λ-1)+(1-λ)2=0, 化簡得,5λ2-4λ+1=0,該方程無解, 所以,棱PD上不存在一點E滿足∠AEC=90°. 3.(2017·南京鹽城一模)直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2

12、,AC=4,AA1=2,=λ. 圖64-16 (1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值; (2)若二面角B1-A1C1-D的大小為60°,求實數(shù)λ的值. [解] 分別以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標系(圖略). 則A(0,0,0,)B(2,0,0),C(0,4,0),A1(0,0,2),B1(2,0,2),C1(0,4,2) (1)當λ=1時,D為BC的中點,所以D(1,2,0),=(1,-2,2),=(0,4,0),=(1,2,-2), 設平面A1C1D的法向量為n1=(x,y,z) 則所以取n1=(2,0,1),又cos〈,n

13、1〉=== , 所以直線DB1與平面A1C1D所成角的正弦值為. (2)∵=λ,∴D, ∴=(0,4,0),=, 設平面A1C1D的法向量為n1=(x,y,z), 則 所以取n1=(λ+1,0,1). 又平面A1B1C1的一個法向量為n2=(0,0,1), 由題意得|cos〈n1,n2〉|=, 所以=,解得λ=-1或λ=--1(不合題意,舍去). 所以實數(shù)λ的值為-1. 4.(2017·無錫模擬) 如圖64-17,在四棱柱ABCD-A1B1C1D1中,側面ADD1A1⊥底面ABCD,D1A=D1D=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC

14、=2. 圖64-17 (1)在平面ABCD內找一點F,使得D1F⊥平面AB1C; (2)求二面角C-B1A-B的平面角的余弦值. [解] (1)以A為坐標原點,建立如圖所示的空間直角坐標系A-xyz, 則A(0,0,0),B(1,0,0),C(1,1,0),D1(0,1,1),B1(1,-1,1),設F(a,b,0),則=(a,b-1,-1), 由 得a=b=, 所以F, 即F為AC的中點. (2)由(1)可取平面B1AC的一個法向量n1==. 設平面B1AB的法向量n2=(x,y,z), 由得 取n2=(0,1,1). 則cos〈n1,n2〉==-, 所以二面角C-B1A-B的平面角的余弦值為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!