《【人教A版】新編高中數(shù)學必修二:全冊作業(yè)與測評 課時提升作業(yè)(二十二)3.3.13.3.2》由會員分享,可在線閱讀,更多相關《【人教A版】新編高中數(shù)學必修二:全冊作業(yè)與測評 課時提升作業(yè)(二十二)3.3.13.3.2(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
新編人教版精品教學資料
課時提升作業(yè)(二十二)
兩條直線的交點坐標
兩點間的距離
(15分鐘 30分)
一、選擇題(每小題4分,共12分)
1.直線x+2y-2=0與直線2x+y-3=0的交點坐標是 ( )
A.(4,1) B.(1,4)
C. D.
【解析】選C.由解得
即交點坐標是.
【補償訓練】三條直線l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0構(gòu)成一個三角形,則k的范圍是 ( )
A.k∈R
B.k∈R且k≠±1,k≠0
C.k∈R且k≠±5,k≠-10
D.k∈R且k≠±15,k≠1
【解析】
2、選C.由題意l3與l1和l2均不平行,即k≠±5,而且l3不過l1,l2的交點(1,1),所以k≠-10.
2.(2015·黃山高一檢測)直線2x+3y-k=0和x-ky+12=0的交點在y軸上,那么k的值是 ( )
A.-24 B.6 C.±6 D.-6
【解析】選C.兩直線的交點在y軸上,可設交點的坐標為(0,y0),則有
由①可得y0=,將其代入②得-+12=0.
所以k2=36,即k=±6.
【補償訓練】若直線y=x+2k+1與直線y=-x+2的交點位于第一象限,則實數(shù)k的取值范圍是 ( )
A.-6
3、 D. k>
【解析】選C.由得
又交點在第一象限,故-k>0且+>0,
解得-
4、(每小題4分,共8分)
4.(2015·漳州高一檢測)斜率為-2,且過兩條直線3x-y+4=0和x+y-4=0交點的直線方程為 .
【解析】解方程組得交點為(0,4),所以要求的直線方程為y=-2x+4.
答案:y=-2x+4
【一題多解】本題還可用以下方法求解:
設過3x-y+4=0和x+y-4=0交點的直線方程為3x-y+4+λ(x+y-4)=0,即(3+λ)x+(λ-1)y+4-4λ=0,
因此=-2,故λ=5,經(jīng)檢驗λ=5是方程的解.
所以要求直線的方程為y=-2x+4.
答案:y=-2x+4
5.(2015·廈門高一檢測)若三條直線2x+3y+8=0,x-y-
5、1=0,x+ky=0相交于一點,則實數(shù)k的值等于 .
【解題指南】將2x+3y+8=0,x-y-1=0聯(lián)立,解出方程組的解,然后將其交點坐標代入方程x+ky=0求解即可.
【解析】由題意,2x+3y+8=0與x-y-1=0的交點在x+ky=0上,由得交點為(-1,-2),代入x+ky=0,得k=-.
答案:-
【補償訓練】若直線y=kx+3與直線y=x-5的交點在直線y=x上,則k= .
【解析】由得x=y=.
將代入y=kx+3,
得=+3,解得k=1(舍去)或k=,經(jīng)檢驗k=是方程的解.
答案:
三、解答題
6.(10分)已知點A(-3,5),B(2,15)
6、,在直線l:3x-4y+4=0上找一點P,使得+最小,并求其最小值.
【解析】設A關于l:3x-4y+4=0的對稱點為C(a,b),則解得直線BC的方程為18x+y-51=0,由
得P,+的最小值為==5.
【補償訓練】已知矩形ABCD的兩個頂點A(-1,3),B(-2,4),若它的對角線的交點M在x軸上,求C,D兩點的坐標.
【解題指南】本題對兩點間距離公式的考查是依托于矩形ABCD,因此解答時充分聯(lián)系矩形的幾何性質(zhì),如線段的相等關系,線段中點等.
【解析】設點M的坐標為(x,0),由=根據(jù)兩點的距離公式,得=,
解得x=-5,又M為AC,BD的中點,根據(jù)中點坐標公式可得C(-9
7、,-3),D(-8,-4).
【拓展延伸】兩點距離公式的應用:
(1)證明三點共線.(2)判斷三角形的形狀.
(3)求點的坐標.(4)求函數(shù)的最值.
(15分鐘 30分)
一、選擇題(每小題5分,共10分)
1.(2015·臨沂高一檢測)已知△ABC的三個頂點是A(-a,0)、B(a,0)和C,則△ABC的形狀是 ( )
A.等腰三角形 B.等邊三角形
C.直角三角形 D.斜三角形
【解析】選C.|AB|=,|AC|=,|BC|=,所以|AB|2=|AC|2+|BC|2,三角形為直角三角形.
【補償訓練】光線從點A(-3,5)射到x軸上,經(jīng)反射后經(jīng)過點B(
8、2,10),則光線從A到B的距離是 ( )
A.5 B.2 C.5 D.10
【解析】選C.根據(jù)光學原理,光線從A到B的距離,等于點A關于x軸的對稱點A′到點B的距離,易求得A′(-3,-5).所以|A′B|=
=5.
2.若三條直線y=2x,x+y=3,mx+ny+5=0相交于同一點,則點(m,n)可能是 ( )
A.(1,-3) B.(3,-1)
C.(-3,1) D.(-1,3)
【解析】選A.由題意y=2x,x+y=3的交點為(1,2),此點在mx+ny+5=0上,則m+2n+5=0,經(jīng)驗證得選項A適合.
二、填空題(每小題5分,共1
9、0分)
3.(2015·懷化高一檢測)直線ax+4y-2=0與直線2x-5y+c=0垂直并且相交于點(1,m),則a,c,m分別等于 .
【解析】兩直線垂直,故-×=-1,a=10,交點為(1,m),所以
解得m=-2,c=-12.
答案:10,-12,-2
4.(2015·蘇州高一檢測)不論a為何實數(shù),直線l:(a+2)x-(a+1)y=2-a恒過一定點,則此定點的坐標為 .
【解析】l:(a+2)x-(a+1)y=2-a整理為a(x-y+1)+2x-y-2=0,由得定點為(3,4).
答案:(3,4)
【補償訓練】兩直線3ax-y-2=0和(2a-1)x+5ay
10、-1=0分別過定點A,B,則|AB|的值為 .
【解析】直線3ax-y-2=0過定點A(0,-2),直線(2a-1)x+5ay-1=0,過定點B,由兩點間的距離公式,得|AB|=.
答案:
三、解答題(每小題10分,共20分)
5.(2015·佛山高一檢測)已知直線l經(jīng)過直線3x+4y-2=0與直線2x+y+2=0的交點P,且垂直于直線x-2y-1=0.
(1)求直線l的方程.
(2)求直線l與兩坐標軸圍成的三角形的面積S.
【解析】(1)聯(lián)立兩直線方程解得則兩直線的交點為P(-2,2).
因為直線x-2y-1=0的斜率為,
又所求直線垂直于直線x-2y-1=0,故所求
11、直線的斜率為-2,則所求直線方程為y-2=-2(x+2),
即2x+y+2=0.
(2)對于方程2x+y+2=0,令y=0則x=-1,則直線與x軸交點坐標A(-1,0),令x=0則y=-2,則直線與y軸交點坐標B(0,-2),直線l與坐標軸圍成的三角形為直角三角形,其面積S=|OA||OB|=×1×2=1.
【補償訓練】(1)求過兩直線3x+y-1=0與x+2y-7=0的交點且與第一條直線垂直的直線方程.
(2)求經(jīng)過直線3x+2y+6=0和2x+5y-7=0的交點,且在兩坐標軸上的截距相等的直線方程.
【解析】(1)方法一:由得
即交點為(-1,4).
因為第一條直線的斜率為-
12、3,且兩直線垂直,
所以所求直線的斜率為.
所以由點斜式得y-4=(x+1),
即x-3y+13=0.
方法二:設所求的方程為3x+y-1+λ(x+2y-7)=0,
即(3+λ)x+(1+2λ)y-(1+7λ)=0,
由題意得3(3+λ)+(1+2λ)=0,
所以λ=-2,代入所設方程得x-3y+13=0.
(2)設直線方程為3x+2y+6+λ(2x+5y-7)=0,
即(3+2λ)x+(2+5λ)y+6-7λ=0.
令x=0,得y=;令y=0,得x=.
由=,得λ=或λ=.
經(jīng)檢驗,都是方程的解.
故所求的直線方程為x+y+1=0或3x+4y=0.
關閉Word文檔返回原板塊