【新步步高】(浙江專(zhuān)用)2016高考數(shù)學(xué)二輪專(zhuān)題突破 專(zhuān)題一 集合與常用邏輯用語(yǔ)、函數(shù) 第3講 函數(shù)的應(yīng)用 理
《【新步步高】(浙江專(zhuān)用)2016高考數(shù)學(xué)二輪專(zhuān)題突破 專(zhuān)題一 集合與常用邏輯用語(yǔ)、函數(shù) 第3講 函數(shù)的應(yīng)用 理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《【新步步高】(浙江專(zhuān)用)2016高考數(shù)學(xué)二輪專(zhuān)題突破 專(zhuān)題一 集合與常用邏輯用語(yǔ)、函數(shù) 第3講 函數(shù)的應(yīng)用 理(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 【新步步高】(浙江專(zhuān)用)2016高考數(shù)學(xué)二輪專(zhuān)題突破 專(zhuān)題一 集合與常用邏輯用語(yǔ)、函數(shù) 第3講 函數(shù)的應(yīng)用 理 第3講 函數(shù)的應(yīng)用 61.(2014·北京)已知函數(shù)f(x)=-log2x,在下列區(qū)間中,包含f(x)零點(diǎn)的區(qū)間是( ) x A.(0,1) C.(2,4) B.(1,2) D.(4,+∞) 22.(2014·江蘇)已知f(x)是定義在R上且周期為3的函數(shù),當(dāng)x∈[0,3)時(shí),f(x)=|x- 12x+|.若函數(shù)y=f(x)-a在區(qū)間[-3,4]上有10個(gè)零點(diǎn)(互不相同),則實(shí)數(shù)a的取值范圍2 是__
2、______. 3.(2015·四川)某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿(mǎn)足函數(shù)關(guān)系y=ekx+b(e=2.718?為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).若該食品在0 ℃的保鮮時(shí)間是192小時(shí),在22 ℃的保鮮時(shí)間是48小時(shí),則該食品在33 ℃的保鮮時(shí)間是________小時(shí). 4.(2014·湖北)某項(xiàng)研究表明:在考慮行車(chē)安全的情況下,某路段車(chē)流量F(單位時(shí)間內(nèi)經(jīng)過(guò)測(cè)量點(diǎn)的車(chē)輛數(shù),單位:輛/時(shí))與車(chē)流速度v(假設(shè)車(chē)輛以相同速度v行駛,單位:米/秒),平均車(chē)長(zhǎng)l(單位:米)的值有關(guān),其公式為F76 000vv+18v+20l2 (1)如果不限
3、定車(chē)型,l=6.05,則最大車(chē)流量為_(kāi)_______輛/時(shí); (2)如果限定車(chē)型,l=5,則最大車(chē)流量比(1)中的最大車(chē)流量增加________輛/時(shí). 1.函數(shù)零點(diǎn)所在區(qū)間、零點(diǎn)個(gè)數(shù)及參數(shù)的取值范圍是高考的常見(jiàn)題型,主要以選擇題、填空題的形式出現(xiàn). 2.函數(shù)的實(shí)際應(yīng)用以二次函數(shù)、分段函數(shù)模型為載體,主要考查函數(shù)的最值問(wèn)題 . 熱點(diǎn)一 函數(shù)的零點(diǎn) 1.零點(diǎn)存在性定理 如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線(xiàn),且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(
4、a,b)使得f(c)=0,這個(gè)c也就是方程 1 f(x)=0的根. 2.函數(shù)的零點(diǎn)與方程根的關(guān)系 函數(shù)F(x)=f(x)-g(x)的零點(diǎn)就是方程f(x)=g(x)的根,即函數(shù)y=f(x)的圖象與函數(shù)y=g(x)的圖象交點(diǎn)的橫坐標(biāo). 1例1 (1)(2015·杭州模擬)函數(shù)f(x)=lg x( ) x A.(0,1) C.(2,3) xB.(1,2) D.(3,10) (2)已知函數(shù)f(x)=e+x,g(x)=ln x+x,h(x)=ln x-1的零點(diǎn)依次為a,b,c,則( ) A.a(chǎn)<b<c
5、 C.c<a<b B.c<b<a D.b<a<c 思維升華 函數(shù)零點(diǎn)(即方程的根)的確定問(wèn)題,常見(jiàn)的有(1)函數(shù)零點(diǎn)值大致存在區(qū)間的確定;(2)零點(diǎn)個(gè)數(shù)的確定;(3)兩函數(shù)圖象交點(diǎn)的橫坐標(biāo)或有幾個(gè)交點(diǎn)的確定.解決這類(lèi)問(wèn)題的常用方法有解方程法、利用零點(diǎn)存在的判定或數(shù)形結(jié)合法,尤其是方程兩端對(duì)應(yīng)的函數(shù)類(lèi)型不同的方程多以數(shù)形結(jié)合求解. 跟蹤演練1 (1)函數(shù)f(x)=x-2在x∈R上的零點(diǎn)的個(gè)數(shù)是( ) A.0 B.1 C.2 D.3 (2)已知定義在R上的函數(shù)f(x)滿(mǎn)足: ??x+2,x∈[0,1
6、?,f(x)=?2?2-x,x∈[-1,0?,?22x 2x+5且f(x+2)=f(x),g(x)=f(x)=g(x)在x+2 區(qū)間[-5,1]上的所有實(shí)根之和為( ) A.-5 C.-7 B.-6 D.-8 熱點(diǎn)二 函數(shù)的零點(diǎn)與參數(shù)的范圍 解決由函數(shù)零點(diǎn)的存在情況求參數(shù)的值或取值范圍問(wèn)題,關(guān)鍵是利用函數(shù)方程思想或數(shù)形結(jié)合思想,構(gòu)建關(guān)于參數(shù)的方程或不等式求解. ??b,a-b≥1,例2 (1)對(duì)任意實(shí)數(shù)a,b定義運(yùn)算“?”:a?b=???a,a-b<1. 設(shè)f(x)=(x-1)?(4+2 x),若函數(shù)y=f(x)
7、+k的圖象與x軸恰有三個(gè)不同交點(diǎn),則k的取值范圍是( ) A.(-2,1) B.[0,1] 2 C.[-2,0) D.[-2,1) (2)若定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( ) A.多于4個(gè) C.3個(gè) B.4個(gè) D.2個(gè) 思維升華 (1)f(x)=g(x)根的個(gè)數(shù)即為函數(shù)y=f(x)和y=g(x)圖象交點(diǎn)的個(gè)數(shù);(2)關(guān)于x的方程f(x)-m=0有解,m的范圍就是函數(shù)y=f(x)的值域. 跟蹤演
8、練2 (1)(2015·紹興模擬)若函數(shù)f(x)=m+log2x(x≥1)存在零點(diǎn),則實(shí)數(shù)m的取值范圍是( ) A.(-∞,0] C.(-∞,0) B.[0,+∞) D.(0,+∞) x(2)(2015·湖南)若函數(shù)f(x)=|2-2|-b有兩個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是________. 熱點(diǎn)三 函數(shù)的實(shí)際應(yīng)用問(wèn)題 解決函數(shù)模型的實(shí)際應(yīng)用題,首先考慮題目考查的函數(shù)模型,并要注意定義域.其解題步驟是(1)閱讀理解,審清題意:分析出已知什么,求什么,從中提煉出相應(yīng)的數(shù)學(xué)問(wèn)題;(2)數(shù)學(xué)建模:弄清題目中的已知條件和數(shù)量關(guān)系,建立函數(shù)關(guān)系式;(
9、3)解函數(shù)模型:利用數(shù)學(xué)方法得出函數(shù)模型的數(shù)學(xué)結(jié)果;(4)實(shí)際問(wèn)題作答:將數(shù)學(xué)問(wèn)題的結(jié)果轉(zhuǎn)化成實(shí)際問(wèn)題作出解答. 例3 一座平面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示),如果池四周?chē)鷫ㄔ靻蝺r(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/平方米,水池所有墻的厚度忽略不計(jì). (1)試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià); (2)若由于地形限制,該池的長(zhǎng)和寬都不能超過(guò)16米,試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià). 3 思維升華 (1)關(guān)于解決函數(shù)
10、的實(shí)際應(yīng)用問(wèn)題,首先要耐心、細(xì)心地審清題意,弄清各量之間的關(guān)系,再建立函數(shù)關(guān)系式,然后借助函數(shù)的知識(shí)求解,解答后再回到實(shí)際問(wèn)題中去. (2)對(duì)函數(shù)模型求最值的常用方法:?jiǎn)握{(diào)性法、基本不等式法及導(dǎo)數(shù)法. 跟蹤演練3 (1)國(guó)家規(guī)定某行業(yè)征稅如下:年收入在280萬(wàn)元及以下的稅率為p%,超過(guò)280萬(wàn)元的部分按(p+2)%征稅,有一公司的實(shí)際繳稅比例為(p+0.25)%,則該公司的年收入是 ( ) A.560萬(wàn)元 C.350萬(wàn)元 B.420萬(wàn)元 D.320萬(wàn)元 (2)某租賃公司擁有汽車(chē)100輛.當(dāng)每輛車(chē)的月租金為3 000元時(shí),可全部租
11、出.當(dāng)每輛車(chē)的月租金每增加50元時(shí),未出租的車(chē)將會(huì)增加一輛.租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元,要使租賃公司的月收益最大,則每輛車(chē)的月租金應(yīng)定為_(kāi)_______元. 1.f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)為( ) A.4 B.5 C.6 ??2-1,x>0,2.已知函數(shù)f(x)=?2?-x-2x,x≤0,?x D.7 若函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),則實(shí)數(shù)m的 取值范圍是________. 3.已知函數(shù)f(x)=5+x
12、-2,g(x)=log5x+x-2的零點(diǎn)分別為x1,x2,則x1+x2的值為_(kāi)_______. 4.在如圖所示的銳角三角形空地中,欲建一個(gè)面積最大的內(nèi)接矩形花園(陰影部分),則其邊長(zhǎng)x為 ________m. x 提醒:完成作業(yè) 專(zhuān)題一 第3講 4 二輪專(zhuān)題強(qiáng)化練 專(zhuān)題一 第3講 函數(shù)的應(yīng)用 A組 專(zhuān)題通關(guān) 21.函數(shù)f(x)=ln(x+1)-的零點(diǎn)所在的區(qū)間是( ) x 1A.(,1) 2 C.(e-1,2) B.(1,e-1) D.(2,e) 1x2.已知函數(shù)f
13、(x)=()-cos x,則f(x)在[0,2π]上的零點(diǎn)個(gè)數(shù)是( ) 4 A.1 C.3 1??x-2,x<0,3.函數(shù)f(x)=?2 ??x-1,x≥0 A.-2 C.0 22B.2 D.4 的所有零點(diǎn)的和等于( ) B.-1 D.1 4.若函數(shù)f(x)=x+2a|x|+4a-3的零點(diǎn)有且只有一個(gè),則實(shí)數(shù)a等于( ) A. C.33 2232B.-3 2D.以上都不對(duì) 2?-x+1,-1≤x≤1,?5.定義在R上的函數(shù)f(x)滿(mǎn)足f(x+4)=f(x),f(x)=???log2?-|
14、x-2|+2?,1<x≤3. 若關(guān)于x的方程f(x)-ax=0有5個(gè)不同實(shí)根,則正實(shí)數(shù)a的取值范圍是( ) 11A.(,) 43 1C.(16-7) 6 ??2-a,x≤0,6.若函數(shù)f(x)=???ln x,x>0x11B.() 641D.(8-15) 6 有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是________. 5 7.某企業(yè)投入100萬(wàn)元購(gòu)入一套設(shè)備,該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.為使該設(shè)備年平均費(fèi)
15、用最低,該企業(yè)________年后需要更新設(shè)備. 8.我們把形如y=(a>0,b>0)的函數(shù)因其圖象類(lèi)似于漢字中的“囧”字,故生動(dòng)地|x|-a 稱(chēng)為“囧函數(shù)”,若當(dāng)a=1,b=1時(shí)的“囧函數(shù)”與函數(shù)y=lg|x|的交點(diǎn)個(gè)數(shù)為n,則n=________. 9.已知函數(shù)f(x)=mx-2x+1有且僅有一個(gè)正實(shí)數(shù)的零點(diǎn),求實(shí)數(shù)m的取值范圍. 10.隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利b萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年
16、多創(chuàng)利0.01b萬(wàn)元,但公司需付下崗職員每人每年0.4b 3萬(wàn)元的生活費(fèi),并且該公司正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的4 益,該公司應(yīng)裁員多少人? 6 2b B組 能力提高 11.已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x.如果函數(shù)g(x)=f(x)-(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( ) A.2k(k∈Z) C.0 1B.2k或2k+k∈Z) 41D.2k或2k-k∈Z) 42 12.(2014·浙江)如圖,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn) 行射擊訓(xùn)
17、練.已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面上的射線(xiàn)CM 移動(dòng),此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計(jì)算由點(diǎn)A觀察點(diǎn)P的仰角θ的大 小(仰角θ為直線(xiàn)AP與平面ABC所成角).若AB=15 m,AC=25 m,∠BCM =30°,則tan θ的最大值是( ) A.30304353 B. C. D. 51099 ??x+1,x≤0,13.已知函數(shù)f(x)=??log2x,x>0,? 則函數(shù)y=f[f(x)+1]的零點(diǎn)有________個(gè). 14.已知函數(shù)f(x)=logax+x-b(a>0,且a≠1),當(dāng)2<a<3<
18、;b<4時(shí),函數(shù)f(x)的零點(diǎn)x0∈(n,n+1),n∈N*,求n的值 7 學(xué)生用書(shū)答案精析 第3講 函數(shù)的應(yīng)用 高考真題體驗(yàn) 1.C [由題意知,函數(shù)f(x)在(0,+∞)上為減函數(shù),又f(1)=6-0=6>0, f(2)=3-1=2>0, f(4)=-log24=-2=-<0, 由零點(diǎn)存在性定理,可知函數(shù)f(x)在區(qū)間(2,4)上必存在零點(diǎn).] 12.(0) 2 解析 作出函數(shù)y=f(x)在[-3,4]上的圖象,f(-3)=f(-2)=f(-1)=f(0)=f(1)=
19、f(2) 11=f(3)=f(4)=,觀察圖象可得0<a<22 643212 3.24 ??e=192,解析 由題意得?22k+b?e=48,?b 48122k∴e=, 1924 111k∴e= 2 ∴x=33時(shí),y=e33k+b=(e)×e 11k3b 1?13=?24. 8?2? 4.(1)1 900 (2)100 解析 (1)當(dāng)l=6.05時(shí),F(xiàn)= =76 000121v++18276 000v v+18v+121v76 00076 0001 900. 22+1812
20、1v·+18v 8 當(dāng)且僅當(dāng)v=11 米/秒時(shí)等號(hào)成立,此時(shí)車(chē)流量最大為1 900輛/時(shí). (2)當(dāng)l=5時(shí),F(xiàn)76 000v76 000v+18v+100100v+182v76 00076 000==2 000. 20+18100v+18v 當(dāng)且僅當(dāng)v=10 米/秒時(shí)等號(hào)成立,此時(shí)車(chē)流量最大為2 000 輛/時(shí). 比(1)中的最大車(chē)流量增加100 輛/時(shí). 熱點(diǎn)分類(lèi)突破 例1 (1)C (2)A 1解析 (1)∵f(2)=lg 2<0, 2 f(3)=lg 3->0, ∴f(2)f
21、(3)<0, 故f(x)的零點(diǎn)在區(qū)間(2,3)內(nèi). (2)由f(a)=e+a=0,得a=-e<0; aa13 b是函數(shù)y=ln x和y=-x圖象交點(diǎn)的橫坐標(biāo),畫(huà)圖可知0<b<1; 由h(x)=ln c-1=0知c=e, 所以a<b<c. 跟蹤演練1 (1)D (2)C 1解析 (1)注意到f(-1)×f(0)=×(-1)<0,因此函數(shù)f(x)在(-1,0)上必有零點(diǎn),又f(2)2 =f(4)=0,因此函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是3,選D. 2x+52?x+2?+11(2)由題意
22、知g(x)==2+f(x)的周期為2,則函數(shù)f(x ),x+2x+2x+2 g(x)在區(qū)間[-5,1]上的圖象如圖所示: 由圖形可知函數(shù)f(x),g(x)在區(qū)間[-5,1]上的交點(diǎn)為A,B,C, 易知點(diǎn)B的橫坐標(biāo)為-3,若設(shè)C的橫坐標(biāo)為t(0<t<1),則點(diǎn)A的橫坐標(biāo)為-4-t,所以方程f(x)=g(x)在區(qū)間[-5,1]上的所有實(shí)根之和為-3+(-4-t)+t=-7. 例2 (1)D (2)B 9 解析 (1)解不等式x-1-(4+x)≥1, 得x≤-2或x≥3,所以,f(x)= ??x+4
23、,x∈?-∞,-2]∪[3,+∞?,?2??x-1,x∈?-2,3?.2 函數(shù)y=f(x)+k的圖象與x軸恰有三個(gè)不同交點(diǎn)轉(zhuǎn)化為函數(shù)y=f(x)的圖象和直線(xiàn)y=-k恰有三個(gè)不同交點(diǎn). 如圖,所以-1<-k≤2,故-2≤k <1. (2)由題意知,f(x)是周期為2的偶函數(shù). 在同一坐標(biāo)系內(nèi)作出函數(shù)y=f(x)及y=log3|x|的圖象,如下: 觀察圖象可以發(fā)現(xiàn)它們有4個(gè)交點(diǎn), 即函數(shù)y=f(x)-log3|x|有4個(gè)零點(diǎn). 跟蹤演練2 (1)A (2)(0,2) 解析 (1)m=-log2x(
24、x≥1)存在零點(diǎn),則m的范圍即為函數(shù)y=-log2x(x≥1)的值域,∴m≤0. (2) 將函數(shù)f(x)=|2-2|-b的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)y=|2-2|的圖象與直線(xiàn)y=b的交點(diǎn)個(gè)數(shù)問(wèn)題,數(shù)形結(jié)合求解. 由f(x)=|2-2|-b=0, xxx 10 得|2x-2|=b. 在同一平面直角坐標(biāo)系中畫(huà)出y=|2x-2|與y=b的圖象,如圖所示. 則當(dāng)0<b<2時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),從而函數(shù)f(x)=|2x-2|-b有兩個(gè)零點(diǎn). 例3 解 (1)設(shè)污水處理池的寬為x米,則長(zhǎng)為162x米. 總造價(jià)f(x
25、)=400×(2x+2×162x)+248×2x+80×162 =1 296x+1 296×100x12 960 =1 296(x+100x)+12 960 ≥1 296×2 x·100 x+12 960=38 880(元), 當(dāng)且僅當(dāng)x=100 x(x>0), 即x=10時(shí)取等號(hào). ∴當(dāng)污水處理池的長(zhǎng)為16.2米,寬為10米時(shí)總造價(jià)最低,總造價(jià)最低為38 880元. ?0<x≤16, (2)由限制條件知????0<162 x≤16, ∴81 8x≤16.
26、設(shè)g(x)=x+10081 x8x≤16), g(x)在81 816]上是增函數(shù), ∴當(dāng)x81 8(162 x16), g(x)有最小值,即f(x)有最小值,即為 818800 81)+12 960=38 882(元). ∴當(dāng)污水處理池的長(zhǎng)為1681 838 882元. 跟蹤演練3 (1)D (2)4 050 解析 (1)設(shè)該公司的年收入為x萬(wàn)元(x>280),則有 280×p%+?x-280??p+2?% x=(p+0.25)%,解得x=320.
27、故該公司的年收入為320萬(wàn)元. 11 (2)設(shè)每輛車(chē)的月租金為x(x>3 000)元,則租賃公司月收益為 x-3 000x-3 000y=(100-x-150)-×50, 5050 整理得y=-+162x-21 000 50 12=-(x-4 050)+307 050. 50 ∴當(dāng)x=4 050時(shí),y取最大值為307 050,即當(dāng)每輛車(chē)的月租金定為4 050元時(shí),租賃公司的月收益最大為307 050元. 高考押題精練 1.B [令2sin πx-x+1=0,則2sin πx=x-1,令h(x)=2sin πx
28、,g(x)=x-1,則x2f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)問(wèn)題就轉(zhuǎn)化為兩個(gè)函數(shù)h(x)與g(x)圖象的交點(diǎn)個(gè)數(shù)問(wèn) 2π題.h(x)=2sin πx的最小正周期為T(mén)==2,畫(huà)出兩個(gè)函數(shù)的圖象,如圖所示,因?yàn)棣? h(1)=g(1),h(g,g(4)=3>2,g(-1)=-2,所以?xún)蓚€(gè)函數(shù)圖象的交點(diǎn)一共有5個(gè),所以f(x)=2sin πx-x+1的零點(diǎn)個(gè)數(shù)為 5.] 5252 2.(0,1) 解析 畫(huà)出f(x)= ?2-1,x>0,??2??-x-2x,x≤0x 的圖象,如圖. 由于函數(shù)g(x)=f(x)-m
29、有3個(gè)零點(diǎn),結(jié)合圖象得:0<m<1, 即m∈(0,1). 3.2 解析 令f(x)=0,g(x)=0,得5=-x+2,log5x=-x+2.作出函數(shù)y=5,y=log5x,y=-x+2的圖象,如圖所示,因?yàn)楹瘮?shù)f(x)=5+x-2,g(x)=log5x+x-2的零點(diǎn)分別為xxx x1,x2,所以x1是函數(shù)y=5x的圖象與直線(xiàn)y=-x+2交點(diǎn)A的橫坐標(biāo),x2是函數(shù)y=log5x的圖象與直線(xiàn)y=-x+2交點(diǎn)B的橫坐標(biāo). 12 因?yàn)閥=5與y=log5x的圖象關(guān)于y=x對(duì)稱(chēng),直線(xiàn)y=-x+2也關(guān)于y=x對(duì)稱(chēng),且直線(xiàn)y=-x+2與
30、它們都只有一個(gè)交點(diǎn),故這兩個(gè)交點(diǎn)關(guān)于y=x對(duì)稱(chēng).又線(xiàn)段AB的中點(diǎn)是y=x與y=-x+2的交點(diǎn),即(1,1),所以x1+x2=2. 4.20 解析 如圖, x 過(guò)A作AH⊥BC交于點(diǎn)H,交DE于點(diǎn)F,易知=?AF=x?FH=40-x,則S=BC40ABAHDExADAFx(40-x)≤()2,當(dāng)且僅當(dāng)40-x=x,即x=20時(shí)取等號(hào),所以滿(mǎn)足題意的邊長(zhǎng)x為20 m. 402 13 二輪專(zhuān)題強(qiáng)化練答案精析 第3講 函數(shù)的應(yīng)用 1321.C [因?yàn)閒(=4<0,f(1)=ln 2-2<0,f(e-1)=1&l
31、t;0,f(2)=ln 3-1>0,22e-1 故零點(diǎn)在區(qū)間(e-1,2)內(nèi).] 1x2.C [f(x)在[0,2π]上的零點(diǎn)個(gè)數(shù)就是函數(shù)y=()和y=cos x的圖象在[0,2π]上的交4 1x點(diǎn)個(gè)數(shù),而函數(shù)y=()和y=cos x的圖象在[0,2π]上的交點(diǎn)有3個(gè).] 4 1x3.C [令()-2=0,解得x=-1,令x-1=0,解得x=1,所以函數(shù)f(x)存在兩個(gè)零點(diǎn)2 1和-1,其和為0.] 4.C [令|x|=t,原函數(shù)的零點(diǎn)有且只有一個(gè),即方程t+2at+4a-3=0只有一個(gè)0根或一個(gè)0根、一個(gè)負(fù)根,∴4a-3=0,
32、解得a=222333a滿(mǎn)足題意.] 222 5.D [f(x)是周期為4的周期函數(shù).做出y=f(x)和y= ax的圖象, 由圖可知,要使方程f(x)-ax=0有5個(gè)不同實(shí)根,即y=f(x)和y=ax的圖象有5個(gè)交點(diǎn).由圖可知,當(dāng)x∈(3,5)時(shí),f(x)=-(x-4)+1,此時(shí)若y=ax與其相切,則a=8-15; 11又方程f(x)=ax在(5,6)無(wú)解,得aa的取值范圍是8-15),選D.] 66 6.(0,1] 解析 當(dāng)x>0時(shí),由f(x)=ln x=0,得x=1. 因?yàn)楹瘮?shù)f(x)有兩個(gè)不同的零點(diǎn), 則
33、當(dāng)x≤0時(shí), 函數(shù)f(x)=2-a有一個(gè)零點(diǎn), 令f(x)=0得a=2, 因?yàn)?<2≤2=1,所以0<a≤1, 所以實(shí)數(shù)a的取值范圍是0<a≤1. 7.10 x02xx 14 解析 由題意可知x年的維護(hù)費(fèi)用為2+4+?+2x=x(x+1),所以x年平均污水處理費(fèi)用y=100+0.5x+x?x+1?100100=x++1.5,由基本不等式得y=x++1.5≥2 xxxx·100 x +1.5=21.5,當(dāng)且僅當(dāng)x= 8.4 100x=10時(shí)取等號(hào),所以該企業(yè)10年后需要更新設(shè)備.
34、 x 1??x-1?x≥0且x≠1?,1解析 由題意知,當(dāng)a=1,b=1時(shí),y=|x|-1?1-??x+1?x<0且x≠-1?. 在同一坐標(biāo)系中畫(huà)出“囧函數(shù)”與函數(shù)y=lg|x |的圖象如圖所示,易知它們有4個(gè)交點(diǎn). 9.解 依題意,得 m>0,??2①?Δ=?-2?-4m>0, ??f?0?<0 m<0,??2②?Δ=?-2?-4m>0, ??f?0?>0 ??m≠0,③?2?Δ=?-2?-4m=0.? 或 或 顯然①無(wú)解;解②,得m<0;解
35、③,得m=1,經(jīng)驗(yàn)證,滿(mǎn)足題意.又當(dāng)m=0時(shí),f(x)=-2x+1,它顯然有一個(gè)為正實(shí)數(shù)的零點(diǎn). 綜上所述,m的取值范圍是(-∞,0]∪{1}. 10.解 設(shè)裁員x人,可獲得的經(jīng)濟(jì)效益為y萬(wàn)元,則 y=(2a-x)(b+0.01bx)-0.4bx =-[x-2(a-70)x]+2ab. 100 3依題意得2a-xa, 4 所以0<x≤2 15 b2a 又140<2a<420,即70<a<210. ①當(dāng)0<a-70≤70<a≤140時(shí),x=a-70,y取到最大值;
36、2 ②當(dāng)a-70>,即140<a<210時(shí),xy取到最大值. 22 故當(dāng)70<a<140時(shí),公司應(yīng)裁員(a-70)人,經(jīng)濟(jì)效益取到最大; 當(dāng)140<a<210時(shí),公司應(yīng)裁員 2 11.D [令g(x)=0,得f(x)=x+m.因?yàn)楹瘮?shù)f(x)=x在[0,1]上的兩個(gè)端點(diǎn)分別為(0,0),(1,1),所以過(guò)這兩點(diǎn)的直線(xiàn)為y=x.當(dāng)直線(xiàn)y=x+m與f(x)=x(x∈[0,1])的圖象相切時(shí),與f(x)在x∈(1,2]上的圖象相交,也就是兩個(gè)交點(diǎn),此時(shí)g(x)有兩個(gè)零點(diǎn),可求得此時(shí)的 11切線(xiàn)方程為y=x根據(jù)
37、周期為2,得m=2k或2k-(k∈Z).] 44 12.D [如圖,過(guò)點(diǎn)P作PO⊥BC于點(diǎn)O, 連接AO,則∠PAO=θ. 設(shè)CO=x m,則OP=3 m. 322aaaa在Rt△ABC中,AB=15 m,AC=25 m, 4所以BC=20 m.所以cos∠BCA=. 5 在△AOC中,由余弦定理得 AO= 242225+x-2×25x× 5=x-40x+625(m). 3x3所以tan θ= 3 3x-40x+625= 406251-+2xx = 33 ?25429?x52
38、5??. 3 353254125當(dāng),即x= tan θ=.] x5439 5 16 13.4 解析 當(dāng)f(x)=0時(shí),x=-1或x=1,故f[f(x)+1]=0時(shí),f(x)+1=-1或1.當(dāng)f(x) 1+1=-1,即f(x)=-2時(shí),解得x=-3或x=;當(dāng)f(x)+1=1,即f(x)=0時(shí),解得x4 =-1或x=1.故函數(shù)y=f[f(x)+1]有4個(gè)不同的零點(diǎn).] 14.2 解析 在直角坐標(biāo)系下分別作出y=log2x,y=log3x及y=3-x,y=4-x的圖象,如圖所示,顯然所有可能的交點(diǎn)構(gòu)成圖中的陰影區(qū)域(不含邊界),其中各點(diǎn)的橫坐標(biāo)均落于(2,3)之內(nèi),又因?yàn)閤0∈(n,n+1),n∈N,故n= 2. * 17
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案