欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)

上傳人:豆?jié){ 文檔編號:70489228 上傳時間:2022-04-06 格式:DOC 頁數(shù):13 大?。?77KB
收藏 版權(quán)申訴 舉報 下載
人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)_第1頁
第1頁 / 共13頁
人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)_第2頁
第2頁 / 共13頁
人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)》由會員分享,可在線閱讀,更多相關(guān)《人教版八年級下冊第十八章 平行四邊形單元練習題(含答案)(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、【精品文檔】如有侵權(quán),請聯(lián)系網(wǎng)站刪除,僅供學習與交流 人教版八年級下冊 第十八章 平行四邊形單元練習題(含答案) .....精品文檔...... 第十八章 平行四邊形 一、選擇題 1.如圖,在?ABCD中,點E是BC延長線上一點,且∠A=120°,則∠DCE的度數(shù)是(  ) A. 120° B. 60° C. 45° D. 30° 2.如圖,已知四邊形ABCD的四邊相等,等邊△AMN的頂點M、N分別在BC、CD上,且AM=AB,則∠C為( 

2、 ) A. 100° B. 105° C. 110° D. 120° 3.如圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,則四邊形AEDF的周長是(  ) A. 24 B. 28 C. 32 D. 36 4.如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,E、F是對角線AC上的兩點,給出下列四個條件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四邊形DEBF是平行四邊形的有(  ) A. 0個 B. 1個 C. 2個 D. 3個 5.正方形具有而菱形不一定具有的性質(zhì)是( 

3、 ) A. 對角線互相垂直 B. 對角線相等 C. 對角線互相平分 D. 對角相等 6.菱形的周長為8 cm,高為1 cm,則菱形兩鄰角度數(shù)比為(  ) A. 4∶1 B. 5∶1 C. 6∶1 D. 7∶1 7.如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為(  ) A. 1 B. 2 C. 3 D. 4 8.如圖,平行四邊形ABCD中,對角線AC與BD相交于點O,且AB⊥AC,AB=3,OC=4,則BD的長為(  ) A. 4 B. 5 C. 10 D. 12 二、填空題

4、 9.如圖,在矩形ABCD中,橫向陰影部分是矩形,另一陰影部分是平行四邊形.依照圖中標注的數(shù)據(jù),計算圖中空白部分的面積,已知a=2b=6c,其面積是__________.(用含c的代數(shù)式表示) 10.在平行四邊形ABCD中,AB=5,BC=6,若AC=BD,則平行四邊形ABCD的面積為__________. 11.如圖,平行四邊形ABCD的對角線AC、BD交于一點O,AB=11,△OCD的周長為27,則AC+BD=________. 12.在四邊形ABCD中,對角線AC、BD交于點O,從 ①AB=CD;②AB∥CD

5、;③OA=OC;④OB=OD;⑤AC=BD;⑥∠ABC=90°這六個條件中, 可選取三個推出四邊形ABCD是矩形,如①②⑤→四邊形ABCD是矩形.請再寫出符合要求的兩個:__________;______________. 13.如圖,直線AE∥BD,點C在BD上,若AE=5,BD=8,△ABD的面積為16,則△ACE的面積為________. 14.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=50°,則∠ACB′=____________. 15.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張

6、等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是____________. 16.在學習了平行四邊形的相關(guān)內(nèi)容后,老師提出這樣一個問題:“四邊形ABCD是平行四邊形,請?zhí)砑右粋€條件,使得?ABCD是矩形.”經(jīng)過思考,小明說:“添加AC=BD.”小紅說:“添加AC⊥BD.”你同意__________的觀點,理由是__________________. 三、解答題 17.如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形A

7、BCD外一點,且∠ADE=∠BAD,AE⊥AC. (1)求證:四邊形ABDE是平行四邊形; (2)如果DA平分∠BDE,AB=5,AD=6,求AC的長. 18.如圖,在△ABC中,AB=6 cm,AC=10 cm,AD平分∠BAC,BD⊥AD于點D,BD的延長線交AC于 點F,E為BC的中點,求DE的長. 19.如圖,平行四邊形ABCD的對角線AC、BD,相交于點O,EF過點O且與AB、CD分別相交于點E、F,求證:AE=CF. 20.如圖,在平行四邊形ABCD中,點E、F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.求證: (1)四邊形AECF是平行

8、四邊形. (2)EF與GH互相平分. 21.如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF. 求證:(1)BE=CF; (2)四邊形BECF是平行四邊形. 答案解析 1.【答案】B 【解析】∵四邊形ABCD是平行四邊形 ∴AB∥CD,AD∥BE ∴∠B=180°-∠A=60° ∴∠DCE=∠B=60°. 故選B. 2.【答案】A 【解析】∵四邊形ABCD的四邊都相等, ∴四邊形ABCD是菱形, ∴∠B=∠D,∠DAB=∠C,AD∥BC, ∴∠DAB+∠B=180°, ∵△AMN是等邊三角形,AM=AB, ∴∠AMN=∠

9、ANM=60°,AM=AD, ∴∠B=∠AMB,∠D=∠AND, 由三角形的內(nèi)角和定理,得∠BAM=∠NAD, 設∠BAM=∠NAD=x, 則∠D=∠AND=180°-60°-2x, ∵∠NAD+∠D+∠AND=180°, ∴x+2(180°-60°-2x)=180°, 解得x=20°, ∴∠C=∠BAD=2×20°+60°=100°. 故選A. 3.【答案】解 ∵DE∥AC,DF∥AB, ∴四邊形AEDF為平行四邊形,∠EAD=∠FDA. ∵AD平分∠BAC, ∴∠EAD=∠FAD=∠FDA, ∴FA=FD, ∴平行四邊形AEDF為菱形. ∵AF=6, ∴C

10、菱形AEDF=4AF=4×6=24. 故選A. 【解析】根據(jù)DE∥AC、DF∥AB,即可得出四邊形AEDF為平行四邊形,再根據(jù)AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,從而得出平行四邊形AEDF為菱形,根據(jù)菱形的性質(zhì)結(jié)合AF=6即可求出四邊形AEDF的周長. 4.【答案】B 【解析】由平行四邊形的判定方法可知:若是四邊形的對角線互相平分,可證明這個四邊形是平行四邊形,②不能證明對角線互相平分,只有①③④可以, 故選B. 5.【答案】B 【解析】菱形的性質(zhì)有①菱形的對邊互相平行,且四條邊都相等,②菱形的對角相等,鄰角互補,③菱形的對角線分別平分且垂直,并且每條對角線

11、平分一組對角; 正方形具有而菱形不一定具有的性質(zhì)是矩形的特殊性質(zhì)(①矩形的四個角都是直角,②矩形的對角線相等), A.菱形和正方形的對角線都互相垂直,故本選項錯誤; B.菱形的對角線不一定相等,正方形的對角線一定相等,故本選項正確; C.菱形和正方形的對角線互相平分,故本選項錯誤; D.菱形和正方形的對角都相等,故本選項錯誤; 故選B. 6.【答案】B 【解析】如圖所示:∵四邊形ABCD是菱形,菱形的周長為8, ∴AB=BC=CD=DA=2,∠DAB+∠B=180°, ∵AE=1,AE⊥BC, ∴AE=AB, ∴∠B=30°, ∴∠DAB=150°, ∴∠DAB∶∠

12、B=5∶1; 故選B. 7.【答案】C 【解析】作F點關(guān)于BD的對稱點F′,則PF=PF′,連接EF′交BD于點P. ∴EP+FP=EP+F′P. 由兩點之間線段最短可知:當E、P、F′在一條直線上時,EP+FP的值最小,此時EP+FP=EP+F′P=EF′. ∵四邊形ABCD為菱形,周長為12, ∴AB=BC=CD=DA=3,AB∥CD, ∵AF=2,AE=1, ∴DF=AE=1, ∴四邊形AEF′D是平行四邊形, ∴EF′=AD=3. ∴EP+FP的最小值為3. 故選C. 8.【答案】C 【解析】∵?ABCD的對角線AC與BD相交于點O, ∴BO=DO,AO

13、=OC=4, ∵AB⊥AC,AB=3, ∴∠BAO=90°, 在Rt△ABO中,由勾股定理,得BO==5, ∴BD=2BO=10, 故選C. 9.【答案】10c2 【解析】本題中空白部分的面積=矩形ABCD的面積-陰影部分的面積. 矩形ABCD的面積為a×b=ab; 陰影部分的面積為a×c+b×c-c×c=ac+bc-c2; 那么空白部分的面積為ab-ac-bc+c2; 因為a=2b=6c, 所以ab-ac-bc+c2 =6c·3c-6c·c-3c·c+c2 =18c2-6c2-3c2+c2 =10c2. 10.【答案】30 【解析】∵平行四邊形ABCD中,A

14、C=BD, ∴四邊形ABCD是矩形. ∴矩形ABCD的面積是5×6=30. 11.【答案】32 【解析】∵平行四邊形ABCD的對角線AC、BD交于一點O,AB=11, ∴CD=11, ∵△OCD的周長為27, ∴CO+DO=27-11=16, ∴AC+BD=32. 12.【答案】①②⑥?、邰堍? 【解析】①②⑥或③④⑥, 理由是∵AB=CD,AB∥CD, ∴四邊形ABCD是平行四邊形, ∵∠ABC=90°, ∴平行四邊形ABCD是矩形. ∵OA=OC,OB=OD, ∴四邊形ABCD是平行四邊形, ∵∠ABC=90°, ∴平行四邊形ABCD是矩形, 13.【答

15、案】10 【解析】過點A作AF⊥BD于點F, ∵△ABD的面積為16,BD=8, ∴BD·AF=×8×AF=16, 解得AF=4, ∵AE∥BD, ∴AF的長是△ACE的高, ∴S△ACE=×AE×4=×5×4=10. 14.【答案】10° 【解析】∵∠ACB=90°,∠B=50°, ∴∠A=40°, ∵∠ACB=90°,CD是斜邊上的中線, ∴CD=BD,CD=AD, ∴∠BCD=∠B=50°,∠DCA=∠A=40°, 由翻折變換的性質(zhì)可知,∠B′CD=∠BCD=50°, ∴∠ACB′=∠B′CD-∠DCA=10°, 15.【答案】5或4或5 【解析】如圖所

16、示: ①當AP=AE=5時, ∵∠BAD=90°, ∴△AEP是等腰直角三角形, ∴底邊PE=AE=5; ②當PE=AE=5時, ∵BE=AB-AE=8-5=3,∠B=90°, ∴PB==4, ∴底邊AP===4; ③當PA=PE時,底邊AE=5; 綜上所述:等腰三角形AEP的對邊長為5或4或5. 16.【答案】小明 對角線相等的平行四邊形是矩形 【解析】根據(jù)是對角線相等的平行四邊形是矩形,故小明的說法是正確的, 根據(jù)對角線互相垂直的平行四邊形是菱形,故小紅的說法是錯誤的. 17.【答案】(1)證明 ∵AE⊥AC,BD垂直平分AC, ∴AE∥BD, ∵∠ADE=

17、∠BAD, ∴DE∥AB, ∴四邊形ABDE是平行四邊形; (2)解 ∵DA平分∠BDE, ∴∠BAD=∠ADB, ∴AB=BD=5, 設BF=x, 則52-x2=62-(5-x)2, 解得x=, ∴AF==, ∴AC=2AF=. 【解析】(1)根據(jù)已知和角平分線的定義證明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明即可; (2)設BF=x,根據(jù)勾股定理求出x的值,再根據(jù)勾股定理求出AF,根據(jù)AC=2AF得到答案. 18.【答案】解 ∵AD平分∠BAC,BD⊥AD, ∴AB=AF=6,BD=DF, ∴CF=AC-A

18、F=4, ∵BD=DF,E為BC的中點, ∴DE=CF=2. 【解析】根據(jù)等腰三角形的判定和性質(zhì)定理得到AB=AF=6,BD=DF,求出CF,根據(jù)三角形中位線定理計算即可. 19.【答案】證明 ∵四邊形ABCD是平行四邊形, ∴AB∥CD,OA=OC, ∴∠OAE=∠OCF, 在△OAE和△OCF中, ∴△AOE≌△COF(ASA), ∴AE=CF. 【解析】由四邊形ABCD是平行四邊形,可得AB∥CD,OA=OC,繼而證得△AOE≌△COF,則可證得結(jié)論. 20.【答案】證明 (1)∵四邊形ABCD是平行四邊形, ∴AB∥CD,AB=CD, ∵AE=CF, ∴四邊

19、形AECF是平行四邊形. (2)由(1)得:四邊形AECF是平行四邊形, ∴AF∥CE, ∵AE=CF,AB∥CD,AB=CD, ∴BE∥DF,BE=DF, ∴四邊形BFDE是平行四邊形, ∴BF∥DE, ∴四邊形EGFH是平行四邊形, ∴EF與GH互相平分. 【解析】(1)由平行四邊形的性質(zhì)得出AB∥CD,AB=CD,由AE=CF,即可得出結(jié)論; (2)由平行四邊形的性質(zhì)得出AF∥CE,再證明四邊形BFDE是平行四邊形,得出BF∥DE,證出四邊形EGFH是平行四邊形,即可得出結(jié)論. 21.【答案】證明 (1)∵BE⊥AD,CF⊥AD, ∴∠AEB=∠DFC=90°, ∵AB∥CD, ∴∠A=∠D, 在△AEB與△DFC中, ∴△AEB≌△DFC(ASA), ∴BE=CF; (2)∵BE⊥AD,CF⊥AD, ∴BE∥CF, ∵BE=CF, ∴四邊形BECF是平行四邊形. 【解析】(1)通過全等三角形(△AEB≌△DFC)的對應邊相等證得BE=CF; (2)由“在同一平面內(nèi),同垂直于同一條直線的兩條直線相互平行”證得BE∥CF.易得四邊形BECF是平行四邊形.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!