《高考數(shù)學(xué)專題復(fù)習(xí) 專題四第1講 空間幾何體課件》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)專題復(fù)習(xí) 專題四第1講 空間幾何體課件(34頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題四 立體幾何第1講空間幾何體1(2012遼寧)一個幾何體的三視圖如圖所示,則該幾何體的表面積為_真題感悟自主學(xué)習(xí)導(dǎo)引解析將三視圖還原為直觀圖后求解根據(jù)三視圖可知幾何體是一個長方體挖去一個圓柱,所以S2(4312)2238.答案38高考考查本部分內(nèi)容時一般把三視圖與空間幾何體的表面積與體積相結(jié)合,題型以小題為主,解答此類題目需仔細(xì)觀察圖形,從中獲知線面的位置關(guān)系與數(shù)量大小,然后依據(jù)公式計(jì)算考題分析網(wǎng)絡(luò)構(gòu)建高頻考點(diǎn)突破考點(diǎn)一:空間幾何體與三視圖【例1】已知三棱錐的俯視圖與側(cè)視圖如圖所示,俯視圖是邊長為2的正三角形,側(cè)視圖是有一直角邊為2的直角三角形,則該三棱錐的正視圖可能為 審題導(dǎo)引條件中的俯
2、視圖與側(cè)視圖給出了邊長,故可根據(jù)三視圖的數(shù)量關(guān)系進(jìn)行選擇規(guī)范解答空間幾何體的正視圖和側(cè)視圖的“高平齊”,故正視圖的高一定是2,正視圖和俯視圖“長對正”,故正視圖的底面邊長為2,根據(jù)側(cè)視圖中的直角說明這個空間幾何體最前面的面垂直于底面,這個面遮住了后面的一個側(cè)棱,綜合以上可知,這個空間幾何體的正視圖可能是C.答案C【規(guī)律總結(jié)】解決三視圖問題的技巧空間幾何體的數(shù)量關(guān)系也體現(xiàn)在三視圖中,正視圖和側(cè)視圖的“高平齊”,正視圖和俯視圖的“長對正”,側(cè)視圖和俯視圖的“寬相等”也就是說正視圖、側(cè)視圖的高就是空間幾何體的高,正視圖、俯視圖中的長就是空間幾何體的最大長度,側(cè)視圖、俯視圖中的寬就是空間幾何體的最大寬
3、度在繪制三視圖時,分界線和可見輪廓線都用實(shí)線畫出,被遮擋的部分的輪廓線用虛線表示出來,即“眼見為實(shí)、不見為虛”在三視圖的判斷與識別中要特別注意其中的“虛線”【變式訓(xùn)練】答案A考點(diǎn)二:空間幾何體的表面積與體積【例2】(1)一個幾何體按比例繪制的三視圖如圖所示(單位:m),則該幾何體的體積為(2)(2012豐臺一模)若正四棱錐的正視圖和俯視圖如圖所示,則該幾何體的表面積是審題導(dǎo)引(1)把三視圖還原為幾何體,畫出其直觀圖,然后分別計(jì)算各個部分的體積,最后整合得到結(jié)果;(2)作出幾何體的直觀圖,根據(jù)正視圖中的幾何體的數(shù)量可得直觀圖的數(shù)量,可求其表面積規(guī)范解答(1)這個空間幾何體的直觀圖如圖所示,把右半
4、部分割補(bǔ)到上方的后面以后,實(shí)際上就是三個正方體,故其體積是3 m3.故選C.(2)正四棱錐的直觀圖如圖所示,答案(1)C(2)B【規(guī)律總結(jié)】組合體的表面積和體積的計(jì)算方法實(shí)際問題中的幾何體往往不是單純的柱、錐、臺、球,而是由柱、錐、臺、球或其一部分組成的組合體,解決這類組合體的表面積或體積的基本方法就是“分解”,將組合體分解成若干部分,每部分是柱、錐、臺、球或其一個部分,分別計(jì)算其體積,然后根據(jù)組合體的結(jié)構(gòu),將整個組合體的表面積或體積轉(zhuǎn)化為這些“部分的表面積或體積”的和或差易錯提示空間幾何體的面積有側(cè)面積和表面積之分,表面積就是全面積,是一個空間幾何體中“暴露”在外的所有面的面積,在計(jì)算時要注
5、意區(qū)分是“側(cè)面積還是表面積”多面體的表面積就是其所有面的面積之和,旋轉(zhuǎn)體的表面積除了球之外,都是其側(cè)面積和底面面積之和對于簡單的組合體的表面積,一定要注意其表面積是如何構(gòu)成的,在計(jì)算時不要多算也不要少算,組合體的表面積要根據(jù)情況決定其表面積是哪些面積之和【變式訓(xùn)練】2(2012濟(jì)南模擬)已知某幾何體的三視圖如圖所示,則該幾何體的體積為_3某品牌香水瓶的三視圖如圖所示(單位:cm),則該幾何體的表面積為_cm2.考點(diǎn)三:球與球的組合體審題導(dǎo)引如圖所示,根據(jù)對稱性,只要在四棱錐的高線SE上找到一個點(diǎn)O使得OAOS,則四棱錐的五個頂點(diǎn)就在同一個球面上【規(guī)律總結(jié)】巧解球與多面體的組合問題求解球與多面體
6、的組合問題時,其關(guān)鍵是確定球心的位置,可以根據(jù)空間幾何體的對稱性判斷球心的位置,然后通過作出輔助線或輔助平面確定球的半徑和多面體中各個幾何元素的關(guān)系,達(dá)到求解解題需要的幾何量的目的【變式訓(xùn)練】名師押題高考【押題1】某三棱錐的側(cè)視圖和俯視圖及部分?jǐn)?shù)據(jù)如圖所示,則該三棱錐的體積為_ 押題依據(jù)幾何體的三視圖是高考的熱點(diǎn)問題,通常與幾何體的體積和表面積結(jié)合考查本題給出幾何體的三視圖及其數(shù)量大小,要求考生據(jù)此計(jì)算幾何體的體積,此類型可以說是高考的必考點(diǎn),故押此題【押題2】正四面體的四個頂點(diǎn)都在同一個球面上,且正四面體的高為4,則這個球的表面積是_答案36押題依據(jù)本題主要考查空間幾何體與球的組合體知識,這類題是高考考查球及其組合體的常考題型,有兩類重要組合模型,即球的內(nèi)接與球的外切課時訓(xùn)練提能課時訓(xùn)練提能本講結(jié)束請按ESC鍵返回