《新人教A版高中數(shù)學(xué)必修二--212 空間中直線與直線之間的位置關(guān)系 示范教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《新人教A版高中數(shù)學(xué)必修二--212 空間中直線與直線之間的位置關(guān)系 示范教案(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第二課時(shí) §2.1.2 空間中直線與直線之間的位置關(guān)系
一、教學(xué)目標(biāo):
1、知能目標(biāo)
(1)了解空間中兩條直線的位置關(guān)系;
(2)理解異面直線的概念、畫法,培養(yǎng)學(xué)生的空間想象能力;
(3)理解并掌握公理4;
(4)理解并掌握等角定理;
(5)異面直線所成角的定義、范圍及應(yīng)用。
2、情感目標(biāo)
讓學(xué)生感受到掌握空間兩直線關(guān)系的必要性,提高學(xué)生的學(xué)習(xí)興趣。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):1、異面直線的概念;
2、公理4及等角定理。
難點(diǎn):異面直線所成角的計(jì)算。
三、學(xué)法與教學(xué)用具
1、學(xué)法:學(xué)生通過閱讀教材、思考與教師交流、概括,從而較好地完成本節(jié)課的教學(xué)目標(biāo)。
2、
2、教學(xué)用具:多媒體、長方體模型、三角板
四、教學(xué)過程
(一)課題導(dǎo)入
1、通過身邊諸多實(shí)物,引導(dǎo)學(xué)生思考、舉例和相互交流得出異面直線的概念:不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線。
2、師:那么,空間兩條直線有多少種位置關(guān)系?(板書課題)
(二)講授新課
1、教師給出長方體模型,引導(dǎo)學(xué)生得出空間的兩條直線有如下三種關(guān)系:
共面直線
相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);
平行直線:同一平面內(nèi),沒有公共點(diǎn);
異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。
教師再次強(qiáng)調(diào)異面直線不共面的特點(diǎn),作圖時(shí)通常用一個(gè)或兩個(gè)平面襯托,如下圖:
3、
2、(1)師:在同一平面內(nèi),如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。在空間中,是否有類似的規(guī)律?
組織學(xué)生思考:
長方體ABCD-A'B'C'D'中,
BB'∥AA',DD'∥AA',
BB'與DD'平行嗎?
生:平行
再聯(lián)系其他相應(yīng)實(shí)例歸納出公理4
公理4:平行于同一條直線的兩條直線互相平行。
符號(hào)表示為:設(shè)a、b、c是三條直線
=>a∥c
a∥b
c∥b
強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線平行的依據(jù)。
(2)例2(多媒體)
例2的講解讓學(xué)生掌握了公理4的運(yùn)用
(3)教材P50探究
4、
讓學(xué)生在思考和交流中提升了對(duì)公理4的運(yùn)用能力。
3、組織學(xué)生思考教材P51思考
讓學(xué)生觀察、思考:
∠ADC與A'D'C'、∠ADC與∠A'B'C'的兩邊分別對(duì)應(yīng)平行,這兩組角的大小關(guān)系如何?
生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800
教師畫出更具一般性的圖形,師生共同歸納出如下定理
等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。
教師強(qiáng)調(diào):并非所有關(guān)于平面圖形的結(jié)論都可以推廣到空間中來。
4、以教師講授為主,師生共同交流,導(dǎo)出異面直線所成的角的概念。
(1)師:如圖,已知異面直線a、b,經(jīng)
5、過空間中任一點(diǎn)O作直線a'∥a、b'∥b,我們把a(bǔ)'與b'所成的銳角(或直角)叫異面直線a與b所成的角(夾角)。
(2)強(qiáng)調(diào):
① a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點(diǎn)O一般取在兩直線中的一條上;
② 兩條異面直線所成的角θ∈
③ 當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;
④ 兩條直線互相垂直,有共面垂直與異面垂直兩種情形;
⑤ 計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。
(3)例3
例3的給出讓學(xué)生掌握了如何求異面直線所成的角,從而鞏固了所學(xué)知識(shí)。
(三)課堂練習(xí)
教材
6、P53 練習(xí)1、2
充分調(diào)動(dòng)學(xué)生動(dòng)手的積極性,教師適時(shí)給予肯定。
(四)課堂小結(jié)
在師生互動(dòng)中讓學(xué)生了解:
(1)本節(jié)課學(xué)習(xí)了哪些知識(shí)內(nèi)容?
(2)計(jì)算異面直線所成的角應(yīng)注意什么?
(五)課后作業(yè)
1、判斷題:
(1)a∥b c⊥a => c⊥b ( )
(1)a⊥c b⊥c => a⊥b ( )
2、填空題:
在正方體ABCD-A'B'C'D'中,與BD'成異面直線的有 ________ 條。
3、P56習(xí)題2.1A組6
第三課時(shí)§2.1.3 — 2.1.4 空間中直線與平面、 平面與平面之間的位置關(guān)系
一、教學(xué)目標(biāo):
1、知能目標(biāo)
7、
(1)了解空間中直線與平面的位置關(guān)系;
(2)了解空間中平面與平面的位置關(guān)系;
(3)培養(yǎng)學(xué)生的空間想象能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):空間直線與平面、平面與平面之間的位置關(guān)系。
難點(diǎn):用圖形表達(dá)直線與平面、平面與平面的位置關(guān)系。
三、學(xué)法與教學(xué)用具
1、學(xué)法:學(xué)生借助實(shí)物,通過觀察、類比、思考等,較好地完成本節(jié)課的教學(xué)目標(biāo)。
2、教學(xué)用具:多媒體、長方體模型
四、教學(xué)思想
(一)課題導(dǎo)入
教師以生活中的實(shí)例以及課本P53的思考題為載體,提出了:空間中直線與平面有多少種位置關(guān)系?(板書課題)
(二)研探新知
1、引導(dǎo)學(xué)生觀察、思考身邊的實(shí)物,從而直觀、準(zhǔn)確地歸納出
8、直線與平面有三種位置關(guān)系:
(1)直線在平面內(nèi) —— 有無數(shù)個(gè)公共點(diǎn)
(2)直線與平面相交 —— 有且只有一個(gè)公共點(diǎn)
(3)直線在平面平行 —— 沒有公共點(diǎn)
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用a α來表示
a α a∩α=A a∥α
例4(多媒體展示)
師生共同完成例4
例4的給出加深了學(xué)生對(duì)這幾種位置關(guān)系的理解。
2、引導(dǎo)學(xué)生對(duì)生活實(shí)例以及對(duì)長方體模型的觀察、思考,準(zhǔn)確歸納出兩個(gè)平面之間有兩種位置關(guān)系:
(1)兩個(gè)平面平行 —— 沒有公共點(diǎn)
(2)兩個(gè)平面相交 —— 有且只有一條公共直
9、線
用類比的方法,學(xué)生很快地理解與掌握了新內(nèi)容,這兩種位置關(guān)系用圖形表示為
α
β
L
α
β
α∥β α∩β= L
教師指出:畫兩個(gè)相互平行的平面時(shí),要注意使表示平面的兩個(gè)平行四邊形的對(duì)應(yīng)邊平行。
教材P55
讓學(xué)生獨(dú)立思考,稍后教師作指導(dǎo),加深學(xué)生對(duì)這兩種位置關(guān)系的理解
教材P55習(xí)
學(xué)生獨(dú)立完成后教師檢查、指導(dǎo)
(三)歸納整理、整體認(rèn)識(shí)
教師引導(dǎo)學(xué)生歸納,整理本節(jié)課的知識(shí)脈絡(luò),提升他們掌握知識(shí)的層次。
(四)作業(yè)
1、讓學(xué)生回去整理這三節(jié)課的內(nèi)容,理清脈絡(luò)。
2、教材P56習(xí)題2.1 A組第4題