《2018中考數(shù)學(xué)專題復(fù)習(xí) 二次函數(shù)好題集之大題篇1(無答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018中考數(shù)學(xué)專題復(fù)習(xí) 二次函數(shù)好題集之大題篇1(無答案)(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
二次函數(shù)好題集之大題篇1
1.已知關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有一根為零時(shí),直線與關(guān)于x的二次函數(shù)的圖象交于A、B兩點(diǎn),若M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN⊥x軸,交二次函數(shù)的圖象于點(diǎn)N,求線段MN的最大值及此時(shí)點(diǎn)M的坐標(biāo);
(3)將(2)中的二次函數(shù)圖象x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸上方的部分組成一個(gè)“W”形狀的新圖象,若直線與該新圖象恰好有三個(gè)公共點(diǎn),求b的值.
2.已知:拋物線l1:y=﹣x2+bx+3
2、交x軸于點(diǎn)A,B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣).(1)求拋物線l2的函數(shù)表達(dá)式;
(2)P為直線x=1上一動(dòng)點(diǎn),連接PA,PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線l2上一動(dòng)點(diǎn),過點(diǎn)M作直線MN∥y軸,交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長(zhǎng)度的最大值.
3.如圖,正方形ABCD的邊長(zhǎng)為8cm,E、F、G、H分別是AB、BC、CD、DA 上的動(dòng)點(diǎn),且AE=BF=CG=DH.(1)求證:四邊形EFGH是正
3、方形;
(2)判斷直線EG是否經(jīng)過一個(gè)定點(diǎn),并說明理由;
(3)求四邊形EFGH面積的最小值.
(第4題)
4.如圖,已知二次函數(shù)(其中0<m<1)的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸為直線l.設(shè)P為對(duì)稱軸l上的點(diǎn),連接PA、PC,PA=PC.(1)∠ABC的度數(shù)為 °
(2)求P點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
4、
5.根據(jù)下列要求,解答相關(guān)問題.
(1)請(qǐng)補(bǔ)全以下求不等式的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù);并在下面的坐標(biāo)系中(見圖1)畫出二次函數(shù)的圖象(只畫出圖象即可).
②求得界點(diǎn),標(biāo)示所需:當(dāng)y=0時(shí),求得方程的解為 ;并用鋸齒線標(biāo)示出函數(shù)圖象中y≥0的部分.
③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式的解集為
(2)利用(1)中求不等式解集的步驟,求不等式的解集.
①構(gòu)造函數(shù),畫出圖象:
②求得界點(diǎn),標(biāo)示所需:
③借助圖像,寫出解集:
(3)參照以上兩個(gè)求不等式解集的過程,借助一元二次方程的求根公式,直接寫出關(guān)于x的不等式的解集.
3