河南省2019年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 專(zhuān)題七 類(lèi)比探究題訓(xùn)練
《河南省2019年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 專(zhuān)題七 類(lèi)比探究題訓(xùn)練》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《河南省2019年中考數(shù)學(xué)專(zhuān)題復(fù)習(xí) 專(zhuān)題七 類(lèi)比探究題訓(xùn)練(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題七 類(lèi)比探究題 類(lèi)型一 線(xiàn)段數(shù)量關(guān)系問(wèn)題 (2018·河南)(1)問(wèn)題發(fā)現(xiàn) 如圖①,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空: ①的值為_(kāi)_______; ②∠AMB的度數(shù)為_(kāi)_______; (2)類(lèi)比探究 如圖②,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長(zhǎng)線(xiàn)于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由; (3)拓展延伸 在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線(xiàn)交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合
2、時(shí)AC的長(zhǎng). 【分析】 (1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1; ②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理,得∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°; (2)根據(jù)兩邊的比相等且?jiàn)A角相等可得△AOC∽△BOD,則==,由全等三角形的性質(zhì)得∠AMB的度數(shù); (3)正確畫(huà)出圖形,當(dāng)點(diǎn)C與點(diǎn)M重合時(shí),有兩種情況:如解圖①和②,同理可得△AOC∽△BOD,則∠AMB=90°,=,可得AC的長(zhǎng). 【自主解答】 解:(1)問(wèn)題發(fā)現(xiàn) ①1【解法提示】∵∠AOB=∠COD=40°, ∴∠COA=∠
3、DOB. ∵OC=OD,OA=OB, ∴△COA≌△DOB(SAS), ∴AC=BD, ∴=1. ②40°【解法提示】∵△COA≌△DOB, ∴∠CAO=∠DBO. ∵∠AOB=40°, ∴∠OAB+∠ABO=140°, 在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°. (2)類(lèi)比探究 =,∠AMB=90°,理由如下: 在Rt△OCD中,∠DCO=30°,∠DOC=90°, ∴=tan 30°=, 同理,得=tan 30°=, ∵∠AOB=∠COD=90°, ∴∠AOC=
4、BOD, ∴△AOC∽△BOD, ∴==,∠CAO=∠DBO. ∴∠AMB=180°-∠CAO-∠OAB-MBA=180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)拓展延伸 ①點(diǎn)C與點(diǎn)M重合時(shí),如解圖①, 同理得△AOC∽△BOD, ∴∠AMB=90°,=, 設(shè)BD=x,則AC=x, 在Rt△COD中, ∵∠OCD=30°,OD=1, ∴CD=2, ∴BC=x-2. 在Rt△AOB中,∠OAB=30°,OB=. ∴AB=2OB=2, 在Rt△AMB中,由勾股定理,得AC2+BC2=AB2, 即( x)2+(x-2)2=(2)2, 解
5、得x1=3,x2=-2(舍去), ∴AC=3; ②點(diǎn)C與點(diǎn)M重合時(shí),如解圖②,同理得:∠AMB=90°,=, 設(shè)BD=x,則AC=x, 在Rt△AMB中,由勾股定理,得AC2+BC2=AB2, 即(x)2+(x+2)2=(2)2 解得x1=-3,解得x2=2(舍去). ∴AC=2. 綜上所述,AC的長(zhǎng)為3或2. 圖① 圖② 例1題解圖 1.(2016·河南) (1)發(fā)現(xiàn) 如圖①,點(diǎn)A為線(xiàn)段BC外一動(dòng)點(diǎn),且BC=a,AB=b. 填空:當(dāng)點(diǎn)A位于________________時(shí),線(xiàn)段AC的長(zhǎng)取得最大值,且最大值為_(kāi)_________(用含a,b的式子表示
6、). (2)應(yīng)用 點(diǎn)A為線(xiàn)段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖②所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE. ①請(qǐng)找出圖中與BE相等的線(xiàn)段,并說(shuō)明理由; ②直接寫(xiě)出線(xiàn)段BE長(zhǎng)的最大值. (3)拓展 如圖③,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線(xiàn)段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫(xiě)出線(xiàn)段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo). 2.(2015·河南)如圖①,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE.將△EDC
7、繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α. (1)問(wèn)題發(fā)現(xiàn) ①當(dāng)α=0°時(shí),=____; ②當(dāng)α=180°時(shí),=____; (2)拓展探究 試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖②的情形給出證明. (3)解決問(wèn)題 當(dāng)△EDC旋轉(zhuǎn)至A,D,E三點(diǎn)共線(xiàn)時(shí),直接寫(xiě)出線(xiàn)段BD的長(zhǎng). 3.(2014·河南) (1)問(wèn)題發(fā)現(xiàn) 如圖①,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線(xiàn)上,連接BE. 填空: ①∠AEB的度數(shù)為_(kāi)_________; ②線(xiàn)段AD,BE之間的數(shù)量關(guān)系為_(kāi)_____________. (2)拓展探究 如
8、圖②,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線(xiàn)上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線(xiàn)段CM,AE,BE之間的數(shù)量關(guān)系,并說(shuō)明理由. (3)解決問(wèn)題 如圖③,在正方形ABCD中,CD=,若點(diǎn)P滿(mǎn)足PD=1,且∠BPD=90°,請(qǐng)直接寫(xiě)出點(diǎn)A到BP的距離. 4.(2018·南陽(yáng)二模)在△ABC中,∠ACB是銳角,點(diǎn)D在射線(xiàn)BC上運(yùn)動(dòng),連接AD,將線(xiàn)段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到AE,連接EC. (1)操作發(fā)現(xiàn) 若AB=AC,∠BAC=90°,當(dāng)D在線(xiàn)段BC上時(shí)(不與點(diǎn)B重合),如
9、圖①所示,請(qǐng)你直接寫(xiě)出線(xiàn)段CE和BD的位置關(guān)系和數(shù)量關(guān)系是______________,______________; (2)猜想論證 在(1)的條件下,當(dāng)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),如圖②所示,請(qǐng)你判斷(1)中結(jié)論是否成立,并證明你的判斷. (3)拓展延伸 如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于________度時(shí),線(xiàn)段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C,E重合除外)?此時(shí)若作DF⊥AD交線(xiàn)段CE于點(diǎn)F,且當(dāng)AC=3時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段CF的長(zhǎng)的最大值是____. 5.已知,如圖①,△ABC,△AED是兩個(gè)全等的等
10、腰直角三角形(其頂點(diǎn)B,E重合),∠BAC=∠AED=90°,O為BC的中點(diǎn),F(xiàn)為AD的中點(diǎn),連接OF. (1)問(wèn)題發(fā)現(xiàn) ①如圖①,=_______; ②將△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,如圖②,=_______; (2)類(lèi)比延伸 將圖①中△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到如圖③所示的位置,請(qǐng)計(jì)算出的值,并說(shuō)明理由. (3)拓展探究 將圖①中△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,0°≤α≤90°,AD=,△AED在旋轉(zhuǎn)過(guò)程中,存在△ACD為直角三角形,請(qǐng)直接寫(xiě)出線(xiàn)段CD的長(zhǎng). 類(lèi)型二 圖形面積關(guān)系問(wèn)題 (2017·河南)如圖①,在Rt△ABC中,∠A=
11、90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn). (1)觀(guān)察猜想 圖①中,線(xiàn)段PM與PN的數(shù)量關(guān)系是________,位置關(guān)系是________; (2)探究證明 把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖②的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由; (3)拓展延伸 把△ADE繞A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值. 圖① 圖② 例2題圖 【分析】 (1)利用三角形的中位線(xiàn)定理得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形
12、的中位線(xiàn)定理得出PM∥CE,繼而得出∠DPM=∠DCA,最后用互余即可得出結(jié)論; (2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論; (3)先判斷出MN最大時(shí),△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論. 【自主解答】 解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn), ∴PN∥BD,PN=BD. ∵點(diǎn)P,M是CD,DE的中點(diǎn), ∴PM∥CE,PM=CE. ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN. ∵PN∥BD, ∴∠
13、DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA. ∵∠BAC=90°, ∴∠ADC+∠ACD=90°, ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN, (2)由旋轉(zhuǎn)知,∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE. 同(1)的方法,利用三角形的中位線(xiàn)定理,得PN=BD, PM=CE, ∴PM=PN, ∴△PMN是等腰三角形, 同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE, 同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC. ∵∠DPN
14、=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC. ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°, ∴△PMN是等腰直角三角形, 例2題解圖 (3)如解圖,同(2)的方法得,△PMN是等腰直角三角形, ∴當(dāng)MN最大時(shí),△PMN的面積最大, ∴DE∥BC且DE在頂點(diǎn)A上面, ∴MN最大=AM+AN, 連接AM,AN, 在△ADE中,AD=AE=4,∠DAE=90°, ∴AM=2, 在
15、Rt△ABC中,AB=AC=10,AN=5, ∴MN最大=2+5=7, ∴S△PMN最大=PM2=×MN2=×(7)2=. 1.(2013·河南)如圖①,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°. (1)操作發(fā)現(xiàn) 如圖②,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空: ①線(xiàn)段DE與AC的位置關(guān)系是______________; ②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是______________. (2)猜想論證 當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖③所示的位置時(shí),小明猜想(1)中S
16、1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想. (3)拓展探究 已知∠ABC=60°,點(diǎn)D是角平分線(xiàn)上一點(diǎn),BD=CD=4,DE∥AB交BC于點(diǎn)E(如圖④).若在射線(xiàn)BA上存在點(diǎn)F,使S△DCF=S△BDE,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng). 2.已知Rt△ABC中,BC=AC,∠C=90°,D為AB邊的中點(diǎn),∠EDF=90°,將∠EDF繞點(diǎn)D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長(zhǎng)線(xiàn))于E,F(xiàn).當(dāng)∠EDF繞點(diǎn)D旋轉(zhuǎn)到DE⊥AC于E時(shí),如圖①所示,試證明S△DEF+S△CEF=S
17、△ABC. (1)當(dāng)∠EDF繞點(diǎn)D旋轉(zhuǎn)到DE和AC不垂直時(shí),如圖②所示,上述結(jié)論是否成立?若成立,請(qǐng)說(shuō)明理由;若不成立,試說(shuō)明理由. (2)直接寫(xiě)出圖③中,S△DEF,S△CEF與S△ABC之間的數(shù)量關(guān)系. 3.(2018·鄭州模擬)如圖①所示,將兩個(gè)正方形ABCD和正方形CGFE如圖所示放置,連接DE,BG. (1)圖中∠DCE+∠BCG=__________°;設(shè)△DCE的面積為S1,△BCG的面積為S2,則S1與S2的數(shù)量關(guān)系為_(kāi)_____________; 猜想論證: (2)如圖②所示,將矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)后得
18、到矩形FECG,連接DE,BG,設(shè)△DCE的面積為S1,△BCG的面積為S2,猜想S1和S2的數(shù)量關(guān)系,并加以證明; (3)如圖③所示,在△ABC中,AB=AC=10 cm,∠B=30°,把△ABC沿AC翻折得到△AEC,過(guò)點(diǎn)A作AD平行CE交BC于點(diǎn)D,在線(xiàn)段CE上存在點(diǎn)P,使△ABP的面積等于△ACD的面積,請(qǐng)寫(xiě)出CP的長(zhǎng). 4.(2018·駐馬店一模)如圖①,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線(xiàn)上,點(diǎn)M,N分別是斜邊AB,DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN. (1)觀(guān)察猜想 圖①中,
19、PM與PN的數(shù)量關(guān)系是______________,位置關(guān)系是______________; (2)探究證明 將圖①中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP,BD分別交于點(diǎn)G,H,判斷△PMN的形狀,并說(shuō)明理由; (3)拓展延伸 把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫(xiě)出△PMN面積的最大值. 參考答案 類(lèi)型一 針對(duì)訓(xùn)練 1.解:(1)∵點(diǎn)A為線(xiàn)段BC外一動(dòng)點(diǎn),且BC=a,AB=b, ∴當(dāng)點(diǎn)A位于CB的延長(zhǎng)線(xiàn)上時(shí),線(xiàn)段AC的長(zhǎng)取得最大值,且最大值為BC+AB=a+b. (2)①CD=BE, 理由:∵
20、△ABD與△ACE是等邊三角形, ∴AD=AB,AC=AE,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. 在△CAD和△EAB中,, ∴△CAD≌△EAB,∴CD=BE. ②∵線(xiàn)段BE長(zhǎng)的最大值等于線(xiàn)段CD的最大值, 由(1)知,當(dāng)線(xiàn)段CD的長(zhǎng)取得最大值時(shí),點(diǎn)D在CB的延長(zhǎng)線(xiàn)上, ∴線(xiàn)段BE長(zhǎng)的最大值為BD+BC=AB+BC=4; (3)∵將△APM繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到△PBN,連接AN,如解圖①, 則△APN是等腰直角三角形, ∴PN=PA=2,BN=AM. ∵點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),
21、∴OA=2,OB=5,∴AB=3, ∴線(xiàn)段AM長(zhǎng)的最大值等于線(xiàn)段BN長(zhǎng)的最大值, ∴當(dāng)點(diǎn)N在線(xiàn)段BA的延長(zhǎng)線(xiàn)時(shí),線(xiàn)段BN取得最大值, 最大值為AB+AN. ∵AN=AP=2, ∴線(xiàn)段AM的長(zhǎng)最大值為2+3. 如解圖②,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E. ∵△APN是等腰直角三角形, ∴PE=AE=, ∴OE=BO-AB-AE=5-3-=2-, ∴P(2-,). 圖① 圖② 第1題解圖 2.解:(1)①當(dāng)α=0°時(shí), ∵在Rt△ABC中,∠B=90°, ∴AC===4. ∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn), ∴AE=4÷2=2,BD=8÷2=4, ∴==.
22、 ②如解圖①,當(dāng)α=180°時(shí), 得可得AB∥DE, ∵=, ∴===. (2)當(dāng)0°≤α≤360°時(shí),的大小沒(méi)有變化. ∵∠ECD=∠ACB, ∴∠ECA=∠DCB. 又∵==, ∴△ECA∽△DCB, ∴==. 圖① 圖② 圖③ 第2題解圖 (3)①如解圖②, ∵AC=4,CD=4,CD⊥AD, ∴AD====8. ∵AD=BC,AB=DC,∠B=90°, ∴四邊形ABCD是矩形, ∴BD=AC=4. ③如解圖③,連接BD,過(guò)點(diǎn)D作AC的垂線(xiàn)交AC于點(diǎn)Q,過(guò)點(diǎn)B作AC的垂線(xiàn)交AC于點(diǎn)P, ∵AC=4,CD=4,CD⊥AD, ∴AD==
23、==8, ∵點(diǎn)D、E分別是邊BC、AC的中點(diǎn), ∴DE=AB=×(8÷2)=×4=2, ∴AE=AD-DE=8-2=6, 由(2),可得=, ∴BD==. 綜上所述,BD的長(zhǎng)為4或. 3.解:(1)∵△ACB和△DCE均為等邊三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=60°, ∴∠ACD=∠BCE. 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC. ∵△DCE為等邊三角形,∴∠CDE=∠CED=60°. ∵點(diǎn)A,D,E在同一直線(xiàn)上,∴∠ADC=120°, ∴∠BEC=120°, ∴∠AEB=∠BEC-∠CED=6
24、0°. ②∵△ACD≌△BCE,∴AD=BE. (2)∠AEB=90°,AE=BE+2CM. 理由如下: ∵△ACB和△DCE均為等腰直角三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=90°. ∴∠ACD=∠BCE. 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS), ∴AD=BE,∠ADC=∠BEC. ∵△DCE為等腰直角三角形,∴∠CDE=∠CED=45°. ∵點(diǎn)A,D,E在同一直線(xiàn)上, ∴∠ADC=135°,∴∠BEC=135°, ∴∠AEB=∠BEC-∠CED=90°. ∵CD=CE,CM⊥DE,∴DM=ME. ∵∠DCE=90°,
25、∴DM=ME=CM, ∴AE=AD+DE=BE+2CM. (3)∵PD=1,∴點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上. ∵∠BPD=90°,∴點(diǎn)P在以BD為直徑的圓上, ∴點(diǎn)P是這兩圓的交點(diǎn). ①當(dāng)點(diǎn)P在如解圖①所示位置時(shí), 連接PD,PB,PA,作AH⊥BP,垂足為H, 過(guò)點(diǎn)A作AE⊥AP,交BP于點(diǎn)E. ∵四邊形ABCD是正方形, ∴∠ADB=45°,AB=AD=DC=BC=,∠BAD=90°, ∴BD=2.∵DP=1,∴BP=. ∵∠BPD=∠BAD=90°, ∴點(diǎn)A、P、D、B在以BD為直徑的圓上, ∴∠APB=∠ADB=45°. ∴△PAE是等腰直角三角形.
26、 又∵△BAD是等腰直角三角形,點(diǎn)B,E,P共線(xiàn),AH⊥BP, ∴由(2)中的結(jié)論可得:BP=2AH+PD, ∴=2AH+1, ∴AH=; ②當(dāng)點(diǎn)P在如解圖②所示位置時(shí), 連接PD、PB、PA、作AH⊥BP,垂足為H, 過(guò)點(diǎn)A作AE⊥AP,交PB的延長(zhǎng)線(xiàn)于點(diǎn)E, 同理可得:BP=2AH-PD, ∴=2AH-1, ∴AH=. 綜上所述,點(diǎn)A到BP的距離為或. 圖① 圖② 第3題解圖 4.解:(1)①∵AB=AC,∠BAC=90°, 線(xiàn)段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE, ∴AD=AE,∠BAD=∠CAE, ∴△BAD≌△CAE, ∴CE=BD,∠AC
27、E=∠B, ∴∠BCE=∠BCA+∠ACE=90°, ∴線(xiàn)段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為CE=BD,CE⊥BD; (2)(1)中的結(jié)論仍然成立.證明如下: 如解圖①, ∵線(xiàn)段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE, ∴AE=AD,∠DAE=90°. ∵AB=AC,∠BAC=90°, ∴∠CAE=∠BAD, ∴△ACE≌△ABD, ∴CE=BD,∠ACE=∠B, ∴∠BCE=90°, ∴線(xiàn)段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系為CE=BD,CE⊥BD; (3)45°;. 過(guò)A作AM⊥BC于M,過(guò)點(diǎn)E作EN⊥MA交MA的延長(zhǎng)線(xiàn)于N,如解圖②. ∵線(xiàn)段AD繞點(diǎn)A逆時(shí)針
28、旋轉(zhuǎn)90°得到AE, ∴∠DAE=90°,AD=AE, ∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA, ∴NE=AM. ∵CE⊥BD,即CE⊥MC,∴∠MCE=90°, ∴四邊形MCEN為矩形, ∴NE=MC,∴AM=MC, ∴∠ACB=45°. ∵四邊形MCEN為矩形, ∴Rt△AMD∽R(shí)t△DCF, ∴=,設(shè)DC=x, ∵在Rt△AMC中,∠ACB=45°,AC=3, ∴AM=CM=3,MD=3-x,∴=, ∴CF=-x2+x=-(x-)2+, ∴當(dāng)x=時(shí),CF有最大值,最大值為. 故答案為45°,; 圖① 圖② 第4題解圖 5.解:
29、(1)①∵△ABC,△AED是兩個(gè)全等的等腰直角三角形, ∴AD=BC. ∵O為BC的中點(diǎn),F(xiàn)為AD的中點(diǎn), ∴AF=OC. ∵∠BAC=∠AED=90°,AB=AC,AE=DE, ∴∠DAE=∠CBA=45°, ∴AD∥BC, ∴四邊形AFOC是平行四邊形, ∴OF=AC=EC,∴=; 故答案:; ②∵AO=AC,∠BAO=∠CAO=45°,∠DAE=45°, ∴∠DAE=∠CAO. ∵AE=AC, ∴AF=AO, ∴=, ∴△AFO∽△AEC, ∴==; 故答案:. (2)OF=EC. 理由:在等腰直角△ADE中,F(xiàn)為AD的中點(diǎn), ∴AF=AD=AE
30、. 在等腰直角△ABC中,O為BC的中點(diǎn), 如解圖①,連接AO, ∴AO=AC,∠BAO=∠CAO=45°. ∴∠DAE=45°, ∴∠DAE=∠CAO,即∠DAO=∠CAE. ∵AE=AC, ∴AF=AO, ∴=, ∴△AFO∽△AEC, ∴==; (3)∵△ABC和△AED是兩個(gè)全等的等腰直角三角形, ∴AD=BC=, ∴ED=AE=AB=AC=1, 當(dāng)△ACD為直角三角形時(shí),分兩種情況: 圖① 圖② 圖③ 第5題解圖 ①當(dāng)AD與AB重合時(shí),如解圖②,連接CD. 當(dāng)△ACD為直角三角形時(shí),AD⊥AC, 即將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°
31、. ∵AD=,AC=1, ∴由勾股定理可得CD==; ②當(dāng)AE與AC重合時(shí),如解圖③, 當(dāng)△ACD為直角三角形時(shí),AC⊥CD, 即將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,此時(shí)CD=AC=1. 綜上所述,CD的長(zhǎng)為或1. 類(lèi)型二 針對(duì)訓(xùn)練 1.解:(1)①△DEC繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)D恰好落在AB邊上, ∴AC=CD. ∵∠BAC=90°-∠B=90°-30°=60°. ∴△ACD是等邊三角形, ∴∠ACD=60°, 又∵∠CDE=∠BAC=60°, ∴∠ACD=∠CDE, ∴DE∥AC; ②∵∠B=30°,∠C=90°, ∴CD=AC=AB, ∴BD=AD=AC,
32、根據(jù)等邊三角形的性質(zhì),△ACD的邊AC,AD上的高相等, ∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2; (2)∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到, ∴BC=CE,AC=CD,∠DCE=∠ACB=90°, ∵∠ACN+∠ACE=180°, ∴∠ACN=∠DCM. 在△ACN和△DCM中, ∴△ACN≌△DCM(AAS), ∴AN=DM, ∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2; 第1題解圖 (3)如解圖,過(guò)點(diǎn)D作DF1∥BE交BA于點(diǎn)F1,易求得四邊形BEDF1是菱形,∴BE=DF1,且B
33、E,DF1邊上的高相等, 此時(shí)S△DCF1=S△BDE; 過(guò)點(diǎn)D作DF2⊥BD. ∵∠ABC=60°,F(xiàn)1D∥BE交BA于點(diǎn)F2, ∴∠F2F1D=∠ABC=60°. ∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°, ∴∠F1DF2=∠ABC=60° ∴△DF1F2是等邊三角形, ∴DF1=DF2. ∵BD=CD,∠ABC=60°,點(diǎn)D是角平分線(xiàn)上一點(diǎn), ∴DBC=∠DCB=×60°=30°, ∴∠CDF1=180°-∠BCD=180°-30°=150°, ∠CDF2=360°-150°-60°=150°, ∴∠CDF1=∠CDF2. 在△CDF
34、1和△CDF2中, , ∴△CDF1≌△CDF2(SAS),∴點(diǎn)F2也是所求的點(diǎn). ∵∠ABC=60°,點(diǎn)D是角平分線(xiàn)上一點(diǎn),DE∥AB, ∴∠DBC=∠BDE=∠ABD=×60°=30°. 又∵BD=4, ∴BE=×4÷cos 30°=2÷=, ∴BF1=,BF2=BF1+F1F2=+=. 故BF的長(zhǎng)為或. 2.解:當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE⊥AC時(shí),四邊形CEDF是正方形;設(shè)△ABC的邊長(zhǎng)AC=BC=a,則正方形CEDF的邊長(zhǎng)為a, ∴S△ABC=a2,S正方形CEDF=(a)2=a2,即S△DEF+S△CEF=S△ABC; (1)上述結(jié)論成立;理由如下: 連接CD
35、,如解圖①所示. ∵AC=BC,∠ACB=90°,D為AB中點(diǎn), ∴∠B=45°,∠DCE=∠ACB=45°,CD⊥AB,CD=AB=BD, ∴∠DCE=∠B,∠CDB=90° ∵∠EDF=90°, ∴∠1=∠2, 在△CDE和△BDF中, , ∴△CDE≌△BDF(ASA), ∴S△DEF+S△CEF=S△ADE+S△BDF=S△ABC; 圖① 圖② 第2題解圖 (2)S△DEF-S△CEF=S△ABC;理由如下: 連接CD,如解圖②所示, 同(1)得:△DEC≌△DFB,∠DCE=∠DBF=135°, ∴S△DEF=S五邊形DBFEC, S△CFE
36、+S△DBC, =S△CFE+S△ABC, ∴S△DEF-S△CFE=S△ABC. ∴S△DEF、S△CEF、S△ABC的關(guān)系是S△DEF-S△CEF=S△ABC. 3.解:(1)如解圖①中,∵四邊形ABCD、EFGC都是正方形, ∴∠BCD=∠ECG=90°. ∵∠BCG+∠BCD+∠DCE+∠ECG=360°, ∴∠BCG+∠ECD=180°. 圖① 圖② 圖③ 第3題解圖 如解圖①,過(guò)點(diǎn)E作EM⊥DC于點(diǎn)M,過(guò)點(diǎn)G作GN⊥BN交BN的延長(zhǎng)線(xiàn)于點(diǎn)N, ∴∠EMC=∠N=90°. ∵四邊形ABCD和四邊形ECGF均為正方形, ∴∠BCD=∠DCN=∠
37、ECG=90°,CB=CD,CE=CG, ∴∠1=90°-∠2,∠3=90°-∠2, ∴∠1=∠3. 在△CME和△CNG中, , ∴△CME≌△CNG(ASA), ∴EM=GN. 又∵S1=CD·EM,S2=CB·GN, ∴S1=S2; 故答案為180°,S1=S2; (2)猜想:S1=S2, 證明:如解圖②,過(guò)點(diǎn)E作EM⊥DC于點(diǎn)M,過(guò)點(diǎn)B作BN⊥GC交GC的延長(zhǎng)線(xiàn)于點(diǎn)N, ∴∠EMC=∠N=90°. ∵矩形CGFE由矩形ABCD旋轉(zhuǎn)得到的, ∴CE=CB,CG=CD, ∵∠ECG=∠ECN=∠BCD=90°, ∴∠1=90°-∠2,∠3=90°-∠2,∴∠
38、1=∠3. 在△CME和△CNB中, , ∴△CME≌△CNB(AAS). ∴EM=BN. 又∵S1=CD·EM,S2=CG·BN, ∴S1=S2; (3)如解圖③,作DM⊥AC于M,延長(zhǎng)BA,交EC于N, ∵AB=AC=10 cm,∠B=30°, ∴∠ACB=∠ABC=30°, ∴∠BAC=120°, 根據(jù)翻折的性質(zhì),得∠ACE=∠ACB=30°, ∵AD∥CE, ∴∠DAC=∠ACE=30°, ∴∠BAD=90°,DM=AD, ∴BN⊥EC. ∵AD=tan∠ABD·AB,AB=10 cm, ∴AD=tan 30°×10= (cm), ∴DM=×=(c
39、m). ∵S△ABP=AB·PN,S△ADC=AC·DM,S△ABP=S△ADC,AB=AC, ∴PN=DM=. 在Rt△ANC中,∠ACN=30°,AC=10 (cm), ∴NC=cos∠ACN·AC=cos 30°×10=5(cm). ∵在EC上到N的距離等于的點(diǎn)有兩個(gè), ∴P′C= cm,P″C= cm. ∴CP的長(zhǎng)為 cm或 cm. 4.解:(1)PM=PN,PM⊥PN,理由如下: 如解圖①,延長(zhǎng)AE交BD于O, ∵△ACB和△ECD是等腰直角三角形, ∴AC=BC,EC=CD,∠ACB=∠ECD=90°. 在△ACE和△BCD中, ∴△ACE≌△BCD(
40、SAS), ∴AE=BD,∠EAC=∠CBD, ∵∠EAC+∠AEC=90°,∠AEC=∠BEO, ∴∠CBD+∠BEO=90°, ∴∠BOE=90°,即AE⊥BD, ∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn), ∴PM=BD,PN=AE, ∴PM=PN. ∵PM∥BD,PN∥AE,AE⊥BD, ∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°, ∴∠MPA+∠NPC=90°, ∴∠MPN=90°, 即PM⊥PN. 圖① 圖② 第4題解圖 (2)△PMN為等腰直角三角形,理由如下: 如解圖②,設(shè)AE交BC于點(diǎn)O. ∵△
41、ACB和△ECD是等腰直角三角形, ∴AC=BC,EC=CD,∠ACB=∠ECD=90°, ∴∠ACB+∠BCE=∠ECD+∠BCE, ∴∠ACE=∠BCD, ∴△ACE≌△BCD, ∴AE=BD,∠CAE=∠CBD. 又∵∠AOC=∠BOE,∠CAE=∠CBD, ∴∠BHO=∠ACO=90°. ∵點(diǎn)P,M,N分別為AD,AB,DE的中點(diǎn), ∴PM=BD,PM∥BD,PN=AE,PN∥AE, ∴PM=PN, ∴∠MGE+∠BHA=180°, ∴∠MGE=90°, ∴∠MPN=90°, ∴PM⊥PN,即△PMN為等腰直角三角形. (3)由(2)可知△PMN是等腰直角三角形,PM=BD, ∴當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大, ∴當(dāng)B,C,D共線(xiàn)時(shí),BD的最大值為BC+CD=6, ∴PM=PN=3, ∴△PMN面積的最大值為×3×3=. 28
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案