《(東營(yíng)專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第六章 圓 第一節(jié) 圓的有關(guān)概念和性質(zhì)練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(東營(yíng)專版)2019年中考數(shù)學(xué)復(fù)習(xí) 第六章 圓 第一節(jié) 圓的有關(guān)概念和性質(zhì)練習(xí)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第六章 圓
第一節(jié) 圓的有關(guān)概念和性質(zhì)
姓名:________ 班級(jí):________ 用時(shí):______分鐘
1.(2018·淮安中考)如圖,點(diǎn)A,B,C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是( )
A.70° B.80° C.110° D.140°
2.(2018·杭州中考)如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于點(diǎn)B,C,則BC=( )
A.6 B.6 C.3 D.3
3.(2019·易錯(cuò)題)已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( )
2、A.30° B.60°
C.30°或150° D.60°或120°
4.(2018·涼山州中考)如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為( )
A.40° B.30° C.45° D.50°
5.(2018·隨州中考)如圖,點(diǎn)A,B,C在⊙O上,∠A=40度,∠C=20度,則∠B=________度.
6.(2019·原創(chuàng)題)如圖,Rt△ABC是⊙O的內(nèi)接直角三角形,其中∠BCA=90°,若BC=3,AB=5,OD⊥BC于點(diǎn)D,則OD的長(zhǎng)為_(kāi)_______.
7.(2018·黑龍江中考)如圖,AB為
3、⊙O的直徑,弦CD⊥AB于點(diǎn)E,已知CD=6,EB=1,則⊙O的半徑為_(kāi)_______.
8.(2019·易錯(cuò)題)等腰三角形ABC中,頂角A為40°,點(diǎn)P在以A為圓心,BC長(zhǎng)為半徑的圓上,且BP=BA,則∠PBC的度數(shù)為_(kāi)___________________.
9.如圖,⊙O是△ABC的外接圓,直徑AD=4,∠ABC=∠DAC,則AC的長(zhǎng)為_(kāi)_____.
10.(2019·原創(chuàng)題)如圖,在△ABC的外接圓⊙O中,∠A=60°,AB為直徑,點(diǎn)D是AC的中點(diǎn),作DE⊥AB交AB于點(diǎn)E,若DE=,求BC的長(zhǎng).
11.(2018·河口一模)如圖,直
4、徑為10的⊙A經(jīng)過(guò)點(diǎn)C和點(diǎn)O,點(diǎn)B是y軸右側(cè)⊙A優(yōu)弧上一點(diǎn),∠OBC=30°,則點(diǎn)C的坐標(biāo)為( )
A.(0,5) B.(0,5)
C.(0,) D.(0,)
12.(2018·咸寧中考)如圖,已知⊙O的半徑為5,弦AB,CD所對(duì)的圓心角分別是∠AOB,∠COD,若∠AOB與∠COD互補(bǔ),弦CD=6,則弦AB的長(zhǎng)為( )
A.6 B.8 C.5 D.5
13.(2018·玉林中考)小華為了求出一個(gè)圓盤的半徑,他用所學(xué)的知識(shí),將一寬度為2 cm的刻度尺的一邊與圓盤相切,另一邊與圓盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)分別是“4”和“16”(單
5、位:cm),請(qǐng)你幫小華算出圓盤的半徑是________cm.
14.(2019·易錯(cuò)題)已知⊙O的半徑為10 cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=16 cm,CD=12 cm,則弦AB和CD之間的距離是____________cm.
15.(2018·宜賓中考)如圖,AB是半圓的直徑,AC是一條弦,D是的中點(diǎn),DE⊥AB于點(diǎn)E,且DE交AC于點(diǎn)F,DB交AC于點(diǎn)G,若=,則=________.
16.(2018·無(wú)錫中考)如圖,四邊形ABCD內(nèi)接于⊙O,AB=17,CD=10,∠A=90°,cos B=,求AD的長(zhǎng).
17.如圖
6、,在半徑為5的⊙O中,直徑AB的不同側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P,已知BC∶CA=4∶3,點(diǎn)P在上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于AB對(duì)稱時(shí),求CP的長(zhǎng);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到的中點(diǎn)時(shí),求CP的長(zhǎng);
(3)點(diǎn)P在上運(yùn)動(dòng)時(shí),求CP的長(zhǎng)的取值范圍.
18.(2018·樂(lè)山中考)《九章算術(shù)》是我國(guó)古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動(dòng)著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(
7、ED=1寸),鋸道長(zhǎng)1尺(AB=1尺=10寸),問(wèn)這塊圓柱形木材的直徑是多少?”
如圖所示,請(qǐng)根據(jù)所學(xué)知識(shí)計(jì)算:圓柱形木材的直徑AC是( )
A.13寸 B.20寸
C.26寸 D.28寸
參考答案
【基礎(chǔ)訓(xùn)練】
1.C 2.A 3.D 4.A
5.60 6.2 7.5 8.30°或110°
9.2
10.解:如圖,連接OD.
∵在Rt△ADE中,∠A=60°,
∴∠ADE=30°.
∵點(diǎn)D是AC的中點(diǎn),則OD⊥AC,
∴∠ODE=60°.
又∵DE=,∴OD=2.
又∵點(diǎn)O是A
8、B的中點(diǎn),
根據(jù)中位線定理得BC=2OD=4.
【拔高訓(xùn)練】
11.A 12.B
13.10 14.2或14 15.
16.解:∵四邊形ABCD內(nèi)接于⊙O,∠A=90°,
∴∠C=180°-∠A=90°,∠ABC+∠ADC=180°.
如圖,連接BD,作AE⊥BC于點(diǎn)E,DF⊥AE于點(diǎn)F,
則四邊形CDFE是矩形,EF=CD=10.
在Rt△AEB中,
∵∠AEB=90°,AB=17,
cos∠ABC=,
∴BE=AB·cos∠ABE=,
∴AE==,
∴AF=AE-EF=-10=.
∵∠ABC+∠ADC=180°,∠CDF=90°,
∴∠ABC+∠AD
9、F=90°.
∵cos∠ABC=,
∴sin∠ADF=cos∠ABC=.
在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,
∴AD===6.
17.解:(1)∵點(diǎn)P與點(diǎn)C關(guān)于AB對(duì)稱,∴CP⊥AB.
如圖,設(shè)垂足為點(diǎn)D.
∵AB為⊙O的直徑,
∴∠ACB=90°.
∵AB=10,BC∶CA=4∶3,
∴BC=8,AC=6.
又∵△ACD∽△ABC,
∴=,∴CD=4.8,
∴CP=2CD=9.6.
(2)如圖,連接AP,PB,過(guò)點(diǎn)B作BE⊥PC于點(diǎn)E.
∵點(diǎn)P是的中點(diǎn),
∴AP=BP=5,
∠ACP=∠BCP=45°.
∵BC=8,
∴CE=BE=4.
又∵PB=5,
∴PE==3,
∴CP=CE+PE=7.
(3)點(diǎn)P在上運(yùn)動(dòng)時(shí),恒有CP≥CA,即CP≥6.
當(dāng)CP過(guò)圓心O時(shí),CP取得最大值10,
∴CP的取值范圍是6≤CP≤10.
【培優(yōu)訓(xùn)練】
18.C
8