《(東營(yíng)專(zhuān)版)2019年中考數(shù)學(xué)復(fù)習(xí) 第四章 幾何初步與三角形 第七節(jié) 相似三角形要題隨堂演練》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(東營(yíng)專(zhuān)版)2019年中考數(shù)學(xué)復(fù)習(xí) 第四章 幾何初步與三角形 第七節(jié) 相似三角形要題隨堂演練(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
相似三角形
要題隨堂演練
1.(2018·涼州區(qū)中考)已知=(a≠0,b≠0),下列變形錯(cuò)誤的是( )
A.= B.2a=3b
C.= D.3a=2b
2.如圖的兩個(gè)四邊形相似,則∠α的度數(shù)是( )
A.87° B.60° C.75° D.120°
3.(2018·自貢中考)如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),若△ADE的面積為4,則△ABC的面積為( )
A.8 B.12 C.14 D.16
4.如圖,正方形ABCD的對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,∠ACB的角平分線(xiàn)分別交AB
2、,BD于M,N兩點(diǎn).若AM=2,則線(xiàn)段ON的長(zhǎng)為( )
A. B. C.1 D.
5. (2018·云南中考)如圖,已知AB∥CD,若=,則=________.
6.(2018·河口一模)如圖,D,E分別是△ABC的邊AB,BC上的點(diǎn),且DE∥AC,AE,CD相交于點(diǎn)O,若S△DOE∶S△COA=1∶16,則S△BDE與S△CDE的比是________.
7.(2018·泰安中考)如圖,在菱形ABCD中,AC與BD交于點(diǎn)O,E是BD上一點(diǎn),EF∥AB,∠EAB=∠EBA,過(guò)點(diǎn)B作DA的垂線(xiàn),交DA的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)∠DEF和∠AEF是否相等
3、?若相等,請(qǐng)證明;若不相等,請(qǐng)說(shuō)明理由;
(2)找出圖中與△AGB相似的三角形,并證明;
(3)BF的延長(zhǎng)線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)H,交AC于點(diǎn)M.求證:BM2=MF·MH.
參考答案
1.B 2.A 3.D 4.C 5. 6.1∶3
7.解:(1)∠DEF=∠AEF.理由如下:
∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.
又∵∠EAB=∠EBA,∴∠DEF=∠AEF.
(2)△EOA∽△AGB,證明如下:
∵四邊形ABCD是菱形,∴AB=AD,AC⊥BD,
∴∠GAB=∠ABE+∠ADB=2∠ABE.
又∵∠AEO=∠ABE+∠BAE=2∠ABE,
∴∠GAB=∠AEO.
又∵∠AGB=∠AOE=90°,∴△EOA∽△AGB.
(3)如圖,連接DM.
∵四邊形ABCD是菱形,由對(duì)稱(chēng)性可知
BM=DM,
∠ADM=∠ABM.
∵AB∥CH,
∴∠ABM=∠H,
∴∠ADM=∠H.
又∵∠DMH=∠FMD,
∴△MFD∽△MDH,
∴=,
∴DM2=MF·MH,
∴BM2=MF·MH.
3