《湖南省2019年中考數學總復習 第四單元 三角形 課時訓練22 銳角三角函數及其應用練習》由會員分享,可在線閱讀,更多相關《湖南省2019年中考數學總復習 第四單元 三角形 課時訓練22 銳角三角函數及其應用練習(10頁珍藏版)》請在裝配圖網上搜索。
1、銳角三角函數及其應用
22
銳角三角函數及其應用
限時:30分鐘
夯實基礎
1.計算:cos245°+sin245°= ( )
A.12 B.1 C.14 D.22
2.[2018·柳州] 如圖K22-1,在Rt△ABC中,∠C=90°,BC=4,AC=3,則sinB=ACAB= ( )
圖K22-1
A.35 B.45 C.37 D.34
3.在Rt△ABC中,∠C=90°,sinA=35,BC=6,則AB等于 ( )
A.4 B.6 C.8 D.10
4.[2018·貴陽] 如圖K22-2,A,B,C是小正方形的頂點,
2、且每個小正方形的邊長為1,則tan∠BAC的值為 ( )
A.12 B.1 C.33 D.3
圖K22-2
5.如圖K22-3,在△ABC中,∠BAC=90°,AB=AC,點D為邊AC的中點,DE⊥BC于點E,連接BD,則tan∠DBC的值為 ( )
圖K22-3
A.13 B.2-1 C.2-3 D.14
6.如圖K22-4,長4 m的樓梯AB的傾斜角∠ABD=60°.為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角∠ACD=45°,則調整后的樓梯AC的長為 ( )
圖K22-4
A.23 m B.26 m
C.(23-2)m
3、 D.(26-2)m
7.如圖K22-5,為了測量樓的高度,從樓的頂部A看地面上的一點B,俯角為30°.已知地面上的這點與樓的水平距離BC為30 m,那么樓的高度AC為 m(結果保留根號).?
圖K22-5
8.如圖K22-6,在正方形ABCD外作等腰直角三角形CDE,DE=CE,連接BE,則tan∠EBC= .?
圖K22-6
9.[2018·自貢] 如圖K22-7,在△ABC中,BC=12,tanA=34,∠B=30°.求AC和AB的長.
圖K22-7
能力提升
10.[2018·陜西] 如圖K22-8,在△ABC中,AC=8,∠ABC=60°,
4、∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點E,則AE的長為 ( )
圖K22-8
A.432 B.22 C.832 D.32
11.如圖K22-9是以△ABC的邊AB為直徑的半圓O,點C恰在半圓上,過點C作CD⊥AB,交AB于點D.若cos∠ACD=35,BC=4,則AC的長為 ( )
圖K22-9
A.1 B.203 C.3 D.163
12.已知△ABC中,AB=10,AC=27,∠B=30°,則△ABC的面積等于 .?
13.如圖K22-10,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,C
5、D=4,BC的延長線與AD的延長線交于點E.
(1)若∠A=60°,求BC的長;
(2)若sinA=45,求AD的長.
圖K22-10
14.[2018·貴陽] 如圖K22-11①,在Rt△ABC中,以下是小亮探究asinA與bsinB之間關系的方法:
∵sinA=ac,sinB=bc,
∴c=asinA,c=bsinB.
∴asinA=bsinB.
根據你掌握的三角函數知識,在圖②的銳角三角形ABC中,探究asinA,bsinB,csinC之間的關系,并寫出探究過程.
圖K22-11
拓展練習
15.[2018·嘉興] 如圖K22-12①
6、,滑動調節(jié)式遮陽傘的立柱AC垂直于地面AB,P為立柱上的滑動調節(jié)點,傘體的截面示意圖為△PDE,F為PD的中點,AC=2.8 m,PD=2 m,CF=1 m,∠DPE=20°.當點P位于初始位置P0時,點D與C重合(圖②).根據生活經驗,當太陽光線與PE垂直時,遮陽效果最佳.
(1)上午10:00時,太陽光線與地面的夾角為65°(圖③),為使遮陽效果最佳,點P需從P0上調多少距離?(結果精確到0.1 m)
(2)中午12:00時,太陽光線與地面垂直(圖④),為使遮陽效果最佳,點P在(1)的基礎上還需上調多少距離?(結果精確到0.1 m)
(參考數據:sin70°≈0.94,cos70°≈
7、0.34,tan70°≈2.75,2≈1.41,3≈1.73)
圖K22-12
參考答案
1.B
2.A [解析] 由勾股定理,得AB=AC2+BC2=32+42=5.根據正弦的定義,得sinB=ACAB=35.
3.D 4.B 5.A 6.B
7.103 8.13
9.解:如圖所示,過點C作CD⊥AB,交AB于點D.
在Rt△BCD中,∠B=30°,BC=12,
∴sinB=CDBC=CD12=12.∴CD=6.
cosB=BDBC=BD12=32,∴BD=63.
在Rt△ACD中,tanA=34,CD=6,
∴
8、tanA=CDAD=6AD=34,∴AD=8.
∴AC=AD2+CD2=82+62=10,
AB=AD+BD=8+63.
綜上所述,AC的長為10,AB的長為8+63.
10.C [解析] ∵BE平分∠ABD,∠ABC=60°,
∴∠ABE=∠EBD=30°.
∵AD⊥BC,∴∠BDA=90°.
∴DE=12BE.
∵∠BAD=90°-60°=30°,
∴∠BAD=∠ABE=30°.
∴AE=BE=2DE.
∴AE=23AD.
在Rt△ACD中,sinC=ADAC,
∴AD=AC·sinC=8×22=42.
∴AE=23×42=832.
故選C.
11.D
1
9、2.153或103 [解析] 分兩種情況求解:(1)如圖①所示,作AD⊥BC于點D.
∵AB=10,∠B=30°,∴AD=12AB=12×10=5,BD=AB2-AD2=102-52=53.又∵AC=27,∴CD=AC2-AD2=(27)2-52=3.∴BC=BD+CD=53+3=63.∴△ABC的面積為12BC·AD=12×63×5=153.
(2)如圖②所示,作AD⊥BC于點D.∵AB=10,∠B=30°,∴AD=12AB=12×10=5,BD=AB2-AD2=102-52=53.又∵AC=27,∴CD=AC2-AD2=(27)2-52=3.∴BC=BD-CD=53-3=43.∴△AB
10、C的面積為12BC·AD=12×43×5=103.綜上所述,△ABC的面積等于153或103.
13.解:(1)在Rt△ABE中,∵∠ABE=90°,∠A=60°,AB=6,tanA=BEAB,
∴BE=6×tan60°=63.
在Rt△CDE中,
∵∠CDE=90°,∠E=90°-60°=30°,CD=4,
∴CE=2CD=8.
∴BC=BE-CE=63-8.
(2)在Rt△ABE中,∵∠ABE=90°,sinA=45,
∴BEAE=45.
設BE=4x,則AE=5x.∴AB=3x=6.
∴x=2.∴BE=8,AE=10.
在Rt△CDE中,
∵∠CDE=90°,
11、CD=4,tanE=CDED,
而在Rt△ABE中,tanE=34,
∴CDED=34.
∴ED=43CD=163.
∴AD=AE-ED=143.
14.解:asinA=bsinB=csinC.
理由如下:過點A作AD⊥BC.在Rt△ABD中,sinB=ADc,即AD=csinB.在Rt△ADC中,sinC=ADb,即AD=bsinC.∴csinB=bsinC,即bsinB=csinC.同理可得asinA=csinC,則asinA=bsinB=csinC.
15.解:(1)如圖①,當點P位于初始位置P0時,CP0=2 m.
如圖②,10:00時,太陽光線與地面的夾角為6
12、5°,點P上調至P1處,
∵∠1=90°,∠CAB=90°,∴∠AP1E=115°.
∴∠CP1E=65°.
∵∠DP1E=20°,∴∠CP1F=45°.
∵CF=P1F=1 m,
∴∠C=∠CP1F=45°.
∴△CP1F為等腰直角三角形.∴CP1=2 m.
∴P0P1=CP0-CP1=2-2≈0.6(m).
即點P需從P0上調0.6 m.
(2)如圖③,中午12:00時,太陽光線與P2E,地面都垂直,點P上調至P2處,
∴P2E∥AB.
∵∠CAB=90°,∴∠CP2E=90°.
∵∠DP2E=20°,
∴∠CP2F=∠CP2E-∠DP2E=70°.
∵CF=P2F=1 m,∴△CP2F為等腰三角形.
過點F作FG⊥CP2于點G.
∴GP2=P2F·cos70°=1×0.34=0.34(m).
∴CP2=2GP2=0.68(m).
∴P1P2=CP1-CP2=2-0.68≈0.7(m),
即點P在(1)的基礎上還需上調0.7 m.
10