礦用半掛車分動器設(shè)計【含9張CAD圖紙+PDF圖】
礦用半掛車分動器設(shè)計【含9張CAD圖紙+PDF圖】,含9張CAD圖紙+PDF圖,半掛車,分動器,設(shè)計,CAD,圖紙,PDF
本科畢業(yè)設(shè)計(論文)
題目:礦用半掛車分動器設(shè)計
系 別: 機(jī)電信息系
專 業(yè): 機(jī)械設(shè)計制造及其自動化
班 級:
學(xué) 生:
學(xué) 號:
指導(dǎo)教師:
2013年5月
礦用半掛車分動器設(shè)計
摘 要
本設(shè)計主要了解礦用半掛車,以及礦用半掛車的載重,常見礦用半掛車的分動器基本原理和基本結(jié)構(gòu)的型式,礦用半掛車屬于非公路運(yùn)輸用的重型和超重型自卸掛車主要承擔(dān)大型礦山、工程等運(yùn)輸任務(wù),工程方面,比一般載重車更耐用,工作環(huán)境惡劣、負(fù)載重、勞動強(qiáng)度高。分動器的功用就是將分動器輸出的動力分配到各驅(qū)動橋,并且進(jìn)一步增大扭矩。分動器也是一個齒輪傳動系統(tǒng),它單獨固定在車架上,其輸入軸與分動器的輸出軸用萬向傳動裝置連接,分動器的輸出軸有若干根,分別經(jīng)萬向傳動裝置與各驅(qū)動橋相連。本設(shè)計主要說明了分動器的設(shè)計計算過程。設(shè)計部分較詳細(xì)的敘述了分動器的設(shè)計過程,選擇結(jié)構(gòu)方案、主要參數(shù)、齒輪設(shè)計、軸設(shè)計、計算校核、其他結(jié)構(gòu)部件的設(shè)計。
關(guān)鍵詞:礦用半掛車分動器;齒輪;軸
V
Design of Power Transfer Case for the mine Semi-trailer
Abstract
This design mainly know mine semi-trailer, and mine semi-trailer truck, common mining semi-trailer transfer basic principle and basic structure of the model, mining semi-trailer belongs to the highway transportation of heavy and super-heavy dump trailer mainly bear the transportation tasks such as large-scale mining, engineering, engineering, the truck is more durable than normal, work environment bad, negative load, high labor intensity. Transfer function is to transfer the output of the power allocated to each drive axle, and further increase torque. Transfer box is a gear transmission system, it separately fixed on the frame, its input shaft connected to the transfer box output shaft with a universal transmission device, there are a few root transfer box output shaft, respectively by the universal driving device connected with the drive axle. This design mainly illustrates the design and calculation of transfer process. Design part in detail describes the transfer of the design process, choose the structure scheme, the main parameter, design of gear, shaft structure design, calculation and checking, other parts of the design
Keywords: mine semi-trailer; gear;shaft
目 錄
1緒論…………………………………………………………………………………1
1.1概述.....................................................................................................................…1
1.2分動器簡介..................…..…………………………………………………….....1
1.2.1帶軸間差速器的分動器…………....................................................................1
1.2.2不帶軸間差速器的分動器…………................................................................2
1.2.3裝有超越離合器的分動器…………................................................................2
1.3分動器的構(gòu)造及原理....................................................................................…2
1.4分動器的輪型..................…..………………………………..……………...…....2
1.4.1分時四驅(qū)............................................................................................................2
1.4.2全時四驅(qū)............................................................................................................2
1.4.3適時驅(qū)動............................................................................................................3
1.5分動器結(jié)構(gòu)方案的選擇.........................................................................................3
1.6完成本課題的工作方案及進(jìn)度計劃(按周次填寫)…..……………………...5
1.7畢業(yè)設(shè)計的工作量要求…..………………………………...……………………5
2分動器主要參數(shù)的選擇………………………………………………………6
2.1檔數(shù)及傳動比……………………………………………………………………6
2.2中心距.................…………………………………………………………… …7
2.3齒輪參數(shù).................…………………………………………………… ……7
2.3.1齒輪模數(shù)...........................................................................................................7
2.3.2齒形、壓力角、螺旋角β和齒寬................................. .............................8
2.4高低檔傳動比及其齒數(shù)的確定……… ………………………………………9
2.4.1確定抵擋齒輪的齒數(shù)........................................................................................9
2.4.2確定高擋齒輪的齒數(shù)........................................................................................9
3分動器齒輪強(qiáng)度計算及材料選擇…………………………………………11
3.1齒輪失效形式與原因…………………………………………………………11
3.2齒輪強(qiáng)度計算與校核…………………………………………………………11
3.2.1斜齒輪彎曲應(yīng)力..............................................................................................11
3.2.2齒輪接觸應(yīng)力..................................................................................................12
4軸的計算與校核………………………………………………………………14
4.1軸的失效形式及設(shè)計準(zhǔn)則……………………………………………………14
4.2軸的計算..............……………………………………………………………14
4.2.1輸入軸的初選及校核......................................................................................14
4.2.2輸出軸的初選及校核......................................................................................15
4.3分動器軸承的選擇………………………………………………...............……15
4.3.1軸的結(jié)構(gòu)設(shè)計..................................................................................................15
4.4鍵的計算...............................................................................................................18
5同步器……………………………………………………………………………20
5.1同步器的結(jié)構(gòu)類型…………………………………………………………20
5.2鎖環(huán)式同步器的工作原理……………………………………………………20
5.3慣性鎖止式同步器的主要結(jié)構(gòu)參數(shù)…………………………………………22
5.3.1摩擦錐面的半錐角和摩擦系數(shù)f………………………………………....22
5.3.2摩擦錐面的平均半徑和同步錐環(huán)的鏡像厚度.....................................22
5.3.3摩擦錐面的工作面寬..................................................................................22
5.3.4鎖止角β...........................................................................................................23
5.3.5同步時間與軸向推力.............................................................................23
5.3.6同步器摩擦副的材料......................................................................................23
6工藝分析................................................................................................................24
6.1殼體加工工藝.......................................................................................................24
6.2撥叉加工工藝.......................................................................................................25
6.3齒輪加工工藝.......................................................................................................25
6.4軸的加工工藝.......................................................................................................25
6.5總成的裝配...........................................................................................................26
7總結(jié)…………………………………………………………………......…………28
參考文獻(xiàn)………………………………………………………………………...…29
致謝……………………………………………………………………………….....30
畢業(yè)設(shè)計(論文)知識產(chǎn)權(quán)聲明…………………………………………….....31
畢業(yè)設(shè)計(論文)獨創(chuàng)性聲明………………………………………………….....….32
1 緒論
1 緒論
1.1概述
本課題主要研究礦用半掛車分動器設(shè)計,在多軸驅(qū)動的汽車上,為了將變速器輸出的動力分配到各驅(qū)動橋,通常裝有分動器。礦用半掛車的牽引車是在礦車底盤基礎(chǔ)上改進(jìn)設(shè)計的雙后橋驅(qū)動結(jié)構(gòu),針對橋驅(qū)動結(jié)構(gòu)設(shè)計中的關(guān)鍵設(shè)備—專用分動器,通過分析雙后橋驅(qū)動原理以及分動器的原理和功能,根據(jù)動力分配、底盤結(jié)構(gòu)、傳遞扭矩及傳動方式的要求,確定出分動器的設(shè)計方案和整體結(jié)構(gòu)特點[1]。在近百年中,汽車設(shè)計技術(shù)也經(jīng)歷了由經(jīng)驗設(shè)計發(fā)展到以科學(xué)實驗和技術(shù)分析為基礎(chǔ)的設(shè)計階段。課題設(shè)計的目的礦用半掛車有更好的前景,汽車分動器的發(fā)展到了第五代產(chǎn)品,第一代的分動器基本上為分體結(jié)構(gòu),直齒輪傳動,雙換檔軸操作,鑄鐵殼體[2]。第二代分動器雖然也是分體結(jié)構(gòu),但已改為全斜齒輪傳動,單換檔軸操作,鋁合金殼體。因而,在一定程度上提高了傳動效率 、簡便了換檔、降低了噪音與油耗。第三代分動器在上代的基礎(chǔ)上增加了同步器,使四輪驅(qū)動系統(tǒng)具備汽車在行進(jìn)中換檔的功能。第四代分動器的重大變化在于采用了連體結(jié)構(gòu)以及行星齒輪加鏈傳動,從而優(yōu)化了換檔及大大提高了傳動效率和性能。1996年6月北京先后舉辦了兩個國際汽車展覽會, 眾多國內(nèi)外廠商展出多臺汽車分動器, 其中國外展臺展出的型分動器的一個結(jié)構(gòu)上的特點是前輸出軸傳導(dǎo)系統(tǒng)皆采用低噪聲的多排鏈條傳動。本課題設(shè)計使我們更加了解礦用半掛車分動器設(shè)計[3]。
1.2分動器簡介
裝于多橋驅(qū)動礦車的變速器后,用于傳遞和分配動力至各驅(qū)動橋,兼作副變速器之用。常設(shè)兩個檔,低檔又稱為加力檔。為了不使后驅(qū)動橋超載常設(shè)聯(lián)鎖機(jī)構(gòu),使只有結(jié)合前驅(qū)動橋以后才能掛上加力檔,并用于克服礦車在壞路面上和無路地區(qū)的較大行程阻力及獲得最低穩(wěn)定車速(在發(fā)動機(jī)最大轉(zhuǎn)矩下一般為2.5~5km/h)。高檔為直接檔或亦為減速檔[4]。
1.2.1帶軸間差速器的分動器
各輸出軸可以以不同的轉(zhuǎn)速旋轉(zhuǎn),而轉(zhuǎn)矩分配則由差速器傳動比決定。據(jù)此,可將轉(zhuǎn)矩按軸荷分配到各驅(qū)動橋。裝有這種分動器的礦車,不僅掛加力檔時可使全輪驅(qū)動,以克服壞路面和無路地區(qū)地面的較大阻力,而且掛分動器的高檔時也可使全輪驅(qū)動,以充分用附著重量及附著力,提高礦車在好路面上的牽引性能。
27
畢業(yè)設(shè)計(論文)
1.2.2不帶軸間差速器的分動器
各輸出軸可以以相同的轉(zhuǎn)速旋轉(zhuǎn),而轉(zhuǎn)矩分配則與該驅(qū)動輪的阻力及其傳動機(jī)構(gòu)的剛度有關(guān)。這種結(jié)構(gòu)的分動器在掛低檔時同時將接通前驅(qū)動橋;而掛高檔時前驅(qū)動橋則一定與傳動系分離,使變?yōu)閺膭訕蛞员苊獍l(fā)生功率循環(huán)并降低礦車在好路面上行駛時的動力消耗及輪胎等的磨損。
1.2.3裝有超越離合器的分動器
利用前后輪的轉(zhuǎn)速差使當(dāng)后輪滑轉(zhuǎn)時自動接上前驅(qū)動橋,倒檔時則用另一超越離合器工作。
分動器的功用就是將變速器輸出的動力分配到各驅(qū)動橋,并且進(jìn)一步增大扭矩,是4x4礦用車礦車傳動系中不可缺少的傳動部件,它的前部與礦車變速箱聯(lián)接,將其輸出的動力經(jīng)適當(dāng)變速后同時傳給礦車的前橋和后橋,此時礦車全輪驅(qū)動,可在冰雪、泥沙和無路的地區(qū)地面行駛。大多數(shù)分動器由于要起到降速增矩的作用而比變速箱的負(fù)荷大,所以分動器中的常嚙齒輪均為斜齒輪,軸承也采用圓錐滾子軸承支承[5]。
1.3分動器的構(gòu)造及原理
分動器的輸入軸與變速器的第二軸相連,輸出軸有兩個或兩個以上,通過萬向傳動裝置分別與各驅(qū)動橋相連。
分動器內(nèi)除了具有高低兩檔及相應(yīng)的換檔機(jī)構(gòu)外,還有前橋接合套及相應(yīng)的控制機(jī)構(gòu)。當(dāng)?shù)V用車在良好路面上行駛時,只需后輪驅(qū)動,可以用操縱手柄控制前橋接合套,切斷前驅(qū)動橋輸出軸的動力。分動器的工作要求如下:
先接前橋,后掛低速檔;先退出低速檔,再摘下前橋;上述要求可以通過操縱機(jī)構(gòu)加以保證。
1.4分動器類型
1.4.1分時四驅(qū)(Part-time 4WD)
這是一種駕駛者可以在兩驅(qū)和四驅(qū)之間手動選擇的四輪驅(qū)動系統(tǒng),由駕駛員根據(jù)路面情況,通過接通或斷開分動器來變化兩輪驅(qū)動或四輪驅(qū)動模式,這也是一般礦用車或四驅(qū)SUV最常見的驅(qū)動模式。最顯著的優(yōu)點是可根據(jù)實際情況來選取驅(qū)動模式,比較經(jīng)濟(jì)[6]。
1.4.2全時四驅(qū)(Full-time 4WD)
這種傳動系統(tǒng)不需要駕駛?cè)诉x擇操作,前后車輪永遠(yuǎn)維持四輪驅(qū)動模式,行駛時將發(fā)動機(jī)輸出扭矩按50:50設(shè)定在前后輪上,使前后排車輪保持等量的扭矩。全時驅(qū)動系統(tǒng)具有良好的駕駛操控性和行駛循跡性,有了全時四驅(qū)系統(tǒng),就可以在鋪覆路面上順利駕駛。但其缺點也很明顯,那就是比較廢油,經(jīng)濟(jì)性不夠好。而且,車輛沒有任何裝置來控制輪胎轉(zhuǎn)速的差異,一旦一個輪胎離開地面,往往會使車輛停滯在那里,不能前進(jìn)[7]。
1.4.3適時驅(qū)動(Real-time 4WD)
采用適時驅(qū)動系統(tǒng)的車輛可以通過電腦來控制選擇適合當(dāng)下情況的驅(qū)動模式。在正常的路面,車輛一般會采用后輪驅(qū)動的方式。而一旦遇到路面不良或驅(qū)動輪打滑的情況,電腦會自動檢測并立即將發(fā)動機(jī)輸出扭矩分配給前排的兩個車輪,自然切換到 四輪驅(qū)動狀態(tài),免除了駕駛?cè)说呐袛嗪褪謩硬僮?,?yīng)用更加簡單。不過,電腦與人腦相比,反應(yīng)畢竟較慢,而且這樣一來,也缺少了那種一切盡在掌握的征服感和駕駛樂趣[8]。
本設(shè)計具體參數(shù)如下表所示:
表1.1 分動器設(shè)計參數(shù)
項 目
參 數(shù)
最高時速
171km/h
輪胎型號
235/60 R16
發(fā)動機(jī)型號
CVVT
最大扭矩
184/4500
最大功率
104/6000
最高轉(zhuǎn)速
6000r/min
主減速比
4.625
整車整備質(zhì)量
2090Kg
1.5分動器結(jié)構(gòu)方案的選擇
分動器的結(jié)構(gòu)形式是多種多樣的,各種結(jié)構(gòu)形式都有其各自的優(yōu)缺點,這些優(yōu)缺點隨著主觀和客觀條件的變化而變化。因此在設(shè)計過程中我們應(yīng)深入實際,收集資料,調(diào)查研究,對結(jié)構(gòu)進(jìn)行分析比較,并盡可能地考慮到產(chǎn)品的系列化、通用化和標(biāo)準(zhǔn)化,最后確定較合適的方案。
機(jī)械式具有結(jié)構(gòu)簡單、傳動效率高、制造成本低和工作可靠等優(yōu)點,在不同形式的汽車上得到廣泛應(yīng)用。本設(shè)計采用的結(jié)構(gòu)方案如圖2-1所示。
一般齒輪式分動器:一般齒輪式分動器驅(qū)動前、后橋的兩根輸出軸,在接合前驅(qū)動嚙合套時為剛性連接。其缺點是不能保證前、后輪的地面速度相等,在行駛過程中不可避免地要產(chǎn)生功率循環(huán)現(xiàn)象,這將使驅(qū)動輪載荷大幅度增加,輪胎及機(jī)件磨損加劇,燃油經(jīng)濟(jì)性下降。另外,一般齒輪式分動器分配給前、后橋的轉(zhuǎn)矩比例不定(隨此兩橋所受附著力的比例而變)。這樣雖然會增加附著條件較好驅(qū)動橋的驅(qū)動力,但可能使該橋因超載而損壞。
帶軸間差速器的分動器:帶軸間差速器的分動器在前、后輸出軸和之間有一個行星齒輪式軸間差速器。它正好克服了上述缺點,兩根輸出軸可以不同的轉(zhuǎn)速旋轉(zhuǎn),并按一定的比例將轉(zhuǎn)矩分配給前、后驅(qū)動橋,既可使前橋經(jīng)常處于驅(qū)動狀態(tài),又可保證各車輪運(yùn)動協(xié)調(diào),所以不需另設(shè)接離前橋驅(qū)動的裝置。特點是 承載能力大、工作平穩(wěn)、噪聲小、壽命長。
1.1帶軸間差速器的分動器
如圖帶軸間差速器的分動器1.1所示(A)(B)所示數(shù)字所帶表的意思:1.輸入軸 2.高低擋嚙合套 3.后輸出軸 4.前輸出軸 5.軸間差速器 6.軸間差速鎖。圖(A)(B)在前后輸出軸4和3之間有一個行星輪式軸間差速器5。它克服了一般齒輪式分動器的缺點,兩根輸出軸可以不同的轉(zhuǎn)速旋轉(zhuǎn),并按一定的比例將轉(zhuǎn)矩分配給前、后驅(qū)動橋,即可以使前橋經(jīng)常處于驅(qū)動狀態(tài),又可保證各車輪運(yùn)動協(xié)調(diào)。為了避免打滑時完全喪失驅(qū)動力,分動器加軸間差速鎖7,以便在車輪打滑的情況下將分動器的前、后輸出軸鎖為一體,提高通過性。
綜上比較,分動器選擇帶軸間差速器的分動器,選擇(B)所示的結(jié)構(gòu)設(shè)計。
1.6完成本課題的工作方案及進(jìn)度計劃(按周次填寫)
1~3周:調(diào)研并收集資料;
4~6周:確定設(shè)計方案和整體結(jié)構(gòu)特點;
7~11周:完成結(jié)構(gòu)設(shè)計計算;
12~15周:完成分動器結(jié)構(gòu)設(shè)計的總裝配圖;
16~18周:完成論文撰寫,準(zhǔn)備答辯。
1.7畢業(yè)設(shè)計的工作量要求
畢業(yè)設(shè)計論文一篇,不少于10000字;
實驗(時數(shù))或?qū)嵙?xí)(天數(shù)):2周;
圖紙(幅面和張數(shù)):A0圖紙(折合)2張 ;
其他要求:外文翻譯不少于3000字,參考文獻(xiàn)不少于15篇。
2 分動器主要參數(shù)的選擇
2 分動器主要參數(shù)的選擇
2.1 擋數(shù)及傳動比
根據(jù)驅(qū)動車輪與路面的附著條件,檔數(shù)和傳動比
為了增強(qiáng)礦車在不好道路的驅(qū)動力,目前,四驅(qū)車一般用2個檔位的分動器,分為高檔和低檔.本設(shè)計也采用2個檔位。
選擇最低檔傳動比時,應(yīng)根據(jù)礦車最大爬坡度、驅(qū)動輪與路面的附著力、礦車的最低穩(wěn)定車速以及主減速比和驅(qū)動輪的滾動半徑等來綜合考慮、確定。
礦車爬陡坡時車速不高,空氣阻力可忽略,則最大驅(qū)動力用于克服輪胎與路面間的滾動阻力及爬坡阻力。故有
則由最大爬坡度要求的分動器低檔傳動比為
(2.1)
式中,----礦車總質(zhì)量;
----重力加速度;
----道路最大阻力系數(shù);
----驅(qū)動輪的滾動半徑;
----發(fā)動機(jī)最大轉(zhuǎn)矩;
----主減速比;
----礦車傳動系的傳
求得的分動器低檔傳動比為:
(2.2)
式中,G2----礦車滿載靜止于水平路面時驅(qū)動橋給路面的載荷;
φ----路面的附著系數(shù),計算時取φ=0.5~0.6。
由已知條件:
=2090kg;
畢業(yè)設(shè)計(論文)
=334mm;
=184N.m;
=4.625
=0.85
根據(jù)公式(3-1)可得:=2.05
本設(shè)計取高檔傳動比=1.08
2.2 中心距
中心距對變速器的尺寸及質(zhì)量有直接影響,所選的中心距、應(yīng)能保證齒輪的強(qiáng)度。三軸式變速器的中心局A(mm)可根據(jù)對已有變速器的統(tǒng)計而得出的經(jīng)驗公式初定:
式中,K A----中心距系數(shù)。對轎車,K A =8.9~9.3;對貨車,K A =8.6~9.6
TI max ----變速器處于一檔時的輸出扭矩
TI max=Te max igI η =670.96N﹒m
故可得出初始中心距A=130mm。
2.3齒輪參數(shù)
各齒輪副的相對安裝位置,對于整個分動器的結(jié)構(gòu)布置有很大的影響,要考慮到以下幾個方面的要求:
整車總布置,根據(jù)整車的總布置,對分動器輸入軸與輸出軸的相對位置和分動器的輪廓形狀以及換擋機(jī)構(gòu)提出要求;
駕駛員的使用習(xí)慣;
提高平均傳動效率;
改善齒輪受載狀況,各擋位齒輪在分動器中的位置安排,考慮到齒輪的受載狀況。承受載荷大的低擋齒輪,安置在離軸承較近的方,以減小鈾的變形,使齒輪的重疊系數(shù)不致下降過多。分動器齒輪主要是因接觸應(yīng)力過高而造成表面點蝕損壞,因此將高擋齒輪安排在離兩支承較遠(yuǎn)處。該處因軸的變形而引起齒輪的偏轉(zhuǎn)角較小,故齒輪的偏載也小。
2.3.1齒輪模數(shù)
齒輪模數(shù)是一個重要參數(shù),并且影響它的選取因素又很多,如齒輪的強(qiáng)度、質(zhì)量、噪聲、工藝要求、載荷等。
決定齒輪模數(shù)的因素很多,其中最主要的是載荷的大小。由于高檔齒輪和低檔齒輪載荷不同,股高速擋和低速檔的模數(shù)不宜相同。從加工工藝及維修觀點考慮,同一齒輪機(jī)械中的齒輪模數(shù)不宜過多。
建議用下列各式選取齒輪模數(shù),所選取的模數(shù)大小應(yīng)符合JB111-60規(guī)定的標(biāo)準(zhǔn)值。
第一軸常嚙合斜齒輪的法向模數(shù)mn
(2.4)
其中,=184Nm,可得出=2.67。
同步器和嚙合套的接合大都采用漸開線齒形。由于制造工藝上的原因,同一分動器中的結(jié)合套模數(shù)都去相同,轎車和貨車取2~3.5。本設(shè)計取3。
2.3.2齒形、壓力角、螺旋角和齒寬
壓力角較小時,重合度大,傳動平穩(wěn),噪聲低;較大時可提高輪齒的抗彎強(qiáng)度和表面接觸強(qiáng)度。對轎車,為加大重合度已降低噪聲,取小些;對貨車,為提高齒輪承載力,取大些。在本設(shè)計中變速器齒輪壓力角取20°, 所以分動器齒輪采用的壓力角為20°。
螺旋角β一般范圍為10°~35°。螺旋角增大使齒輪嚙合系數(shù)增加、工作平穩(wěn)、噪聲降低、另外齒輪的強(qiáng)度也有所提高。
關(guān)于螺旋角的方向,輸入軸齒輪采用右旋,這樣可使第一軸所受的軸向力直接經(jīng)過軸承蓋作用在分動器殼體上,避免了因軸向力一二兩軸抱死的現(xiàn)象。中間軸齒輪全部采用左旋,因此中間軸上同時嚙合的兩對齒輪軸向力方向相反,軸向力可互相抵消一部分。
但螺旋角太大,會使軸向力及軸承載荷過大。嚙合套或同步器取30o;斜齒輪螺旋角25°。
應(yīng)該注意的是選擇斜齒輪的螺旋角時應(yīng)力求使軸上是軸向力相互抵消。為此,第二軸上的全部齒輪一律去右旋,而第一軸的斜齒輪左旋,其軸向力經(jīng)軸承蓋由殼體承受。
齒輪寬度的大小直接影響著齒輪的承載能力,加大,齒的承載能力增高。但試驗表明,在齒寬增大到一定數(shù)值后,由于載荷分配不均勻,反而使齒輪的承載能力降低。齒輪寬度大,承載能力高。
但齒輪受載后,由于齒向誤差及軸的撓度變形等原因,沿齒寬方向受力不均勻,因而齒寬不宜太大。
在保證齒輪的強(qiáng)度條件下,盡量選取較小的齒寬,以有利于減輕變速器的重量和縮短其軸向尺寸。
通常根據(jù)齒輪模數(shù)的大小來選定齒寬:
直齒=,為齒寬系數(shù),取為4.5~8.0
斜齒=,為齒寬系數(shù),取為6.0~8.5
本設(shè)計=3×8=24
為齒寬(mm)。采用接合套或同步器換檔時,其接合套的工作寬度初選時可取為2~4mm。
第一軸常嚙合齒輪副齒寬的系數(shù)值可取大一些,使接觸線長度增加,接觸應(yīng)力降低,以提高傳動的平穩(wěn)性和齒輪壽命。
2.4高檔傳動比及各檔齒數(shù)的確定
在初選了中心距、齒輪的模數(shù)和螺旋角后,可根據(jù)預(yù)先確定的變速器檔數(shù)、傳動比和結(jié)構(gòu)方案來分配各檔齒輪的齒數(shù)。
下面結(jié)合本設(shè)計來說明分配各檔齒數(shù)的方法。
2.4.1確定低檔齒輪的齒數(shù)
在初選中心距、齒輪模數(shù)和螺旋角以后,可根據(jù)檔數(shù)、傳動比和傳動方案來分配各檔齒輪的齒數(shù)
低檔傳動比=2.05,其中=130mm、=3;由
(2.5)
有=48
此處取=25,則可得出=36
上面根據(jù)初選的A及m計算出的可能不是整數(shù),將其調(diào)整為整數(shù)后,從式(2-5)看出中心距有了變化,這時應(yīng)從及齒輪變位系數(shù)反過來計算中心距A=130,再以這個修正后的中心距作為以后計算的依據(jù)。
2.4.2確定高檔齒輪的齒數(shù)
高檔傳動比=1.05
同理,
(2.6)
得=48
取=36,=25
齒輪參數(shù)計算結(jié)果如表2-1所示。
低速檔齒輪:
根據(jù),
可以得出
于是可得,圓整取
表2.1 齒輪參數(shù)計算結(jié)果
螺旋角
低檔齒輪
高檔齒輪
法面膜數(shù)
3
3
3
3
端面模數(shù)
3.3
3.3
3.3
3.3
法面壓力角
20
20
20
20
法面齒距
9.42
9.42
9.42
9.42
端面齒距
10.37
10.37
10.37
10.37
標(biāo)準(zhǔn)中心距
80
80
80
80
齒根圓直徑
58.2
91.2
81.3
67.1
齒頂高
3
3
3
3
齒根高
3.75
3.75
3.75
3.75
齒厚
4.72
4.72
4.72
4.72
3 分動器齒輪的強(qiáng)度計算與材料的選擇
3 分動器齒輪的強(qiáng)度計算與材料的選擇
3.1齒輪的失效形式及原因
齒輪的失效形式分三種:輪齒折斷、齒面疲勞剝落和移動換檔齒輪端部破壞。
輪齒折斷分兩種:輪齒受足夠大的沖擊載荷作用,造成輪齒彎曲折斷;輪齒再重復(fù)載荷作用下齒根產(chǎn)生疲勞裂紋,裂紋擴(kuò)展深度逐漸加大,然后出現(xiàn)彎曲折斷。前者在變速器中出現(xiàn)的很少,后者出現(xiàn)的多。
齒輪工作時,一對相互嚙合,齒面相互擠壓,這是存在齒面細(xì)小裂縫中的潤滑油油壓升高,并導(dǎo)致裂縫擴(kuò)展,然后齒面表層出現(xiàn)塊狀脫落形成齒面點蝕。他使齒形誤差加大,產(chǎn)生動載荷,導(dǎo)致輪齒折斷。
用移動齒輪的方法完成換檔的抵擋和倒擋齒輪,由于換檔時兩個進(jìn)入嚙合的齒輪存在角速度茶,換檔瞬間在齒輪端部產(chǎn)生沖擊載荷,并造成損壞。
3.2齒輪強(qiáng)度的計算與校核
與其他機(jī)械設(shè)備使用的分動器比較,不同用途礦車的變速器齒輪使用條件仍是相似的。此外,礦車分動器齒輪所用的材料、熱處理方法、加工方法、精度等級、支撐方式也基本一致。如礦車分動器齒輪用低碳合金鋼制造,采用剃齒或齒輪精加工,齒輪表面采用滲碳淬火熱處理工藝,齒輪精度不低于7級。因此,比用于計算通用齒輪強(qiáng)度公式更為簡化一些的計算公式來計算礦車齒輪,同樣、可以獲得較為準(zhǔn)確的結(jié)果。在這里所選擇的齒輪材料為40Cr。
3.2.1.斜齒輪彎曲應(yīng)力
(3.1)
式中,為Kε重合度影響系數(shù),取1.0;注釋相同,Kσ=1.50。
低檔齒輪圓周力:
5111.11 N
齒輪1的當(dāng)量齒數(shù),可查表的:
畢業(yè)設(shè)計(論文)
MPa
同理得:=206.7MPa
依據(jù)計算二擋齒輪的方法可以得到其他檔位的彎曲應(yīng)力,其計算結(jié)果如下:
230.57MPa
250.65MPa
當(dāng)計算載荷取作用到第一軸上的最大扭矩時,對常嚙合齒輪和高檔齒輪,許用應(yīng)力在180~350MPa范圍內(nèi),因此,上述計算結(jié)果均符合彎曲強(qiáng)度要求.
3.2.2. 輪齒接觸應(yīng)力
(3.2)
斜齒圓柱齒輪:mn=3
=29, =19,E=2.04×105
=72,d2=100
Tj=0.5,Temax=0.5×184=92N
=5111.11Nmm
MPa (3.3)
同理得:
MPa
MPa
MPa
滲碳齒輪的許用應(yīng)力在1300~1400 之間,強(qiáng)度符合要求。
4 軸的計算與校核
4 軸的計算與校核
4.1軸的失效形式及設(shè)計準(zhǔn)則
主要有因疲勞強(qiáng)度不足而產(chǎn)生的疲勞籪裂、因靜強(qiáng)度不足而產(chǎn)生的塑性變形或脆性籪裂、磨損、超過允許范圍的變形和振動等。
軸的設(shè)計應(yīng)滿足如下準(zhǔn)則:
根據(jù)軸的工作條件、生產(chǎn)批量和經(jīng)濟(jì)性原則,選取適合的材料、毛坯形式及熱處理方法。
根據(jù)軸的受力情況、軸上零件的安裝位置、配合尺寸及定位方式、軸的加工方法等具體要求,確定軸的合理結(jié)構(gòu)形狀及尺寸,即進(jìn)行軸的結(jié)構(gòu)設(shè)計。
軸的強(qiáng)度計算或校核。對受力大的細(xì)長軸(如蝸桿軸)和對剛度要求高的軸,還要進(jìn)行剛度計算。在對高速工作下的軸,因有共振危險,故應(yīng)進(jìn)行振動穩(wěn)定性計算。
4.2軸的計算
4.2.1輸入軸的初選與校核
軸的材料主要是經(jīng)過軋制或鍛造的碳鋼或合金鋼。通常用的是碳鋼,其中最常用的是45鋼。對于受力較大或需要限制軸的尺寸或重量或需要提高軸徑的耐磨性以及高低溫、腐蝕等條件下工作的軸,可采用合金鋼。為了提高軸的強(qiáng)度和耐磨性,可對軸進(jìn)行各種熱處理或化學(xué)處理,以及表面強(qiáng)化處理。
綜上,從動軸同樣選用45鋼,查手冊得=25~45MPa。
主動軸主要受額定轉(zhuǎn)矩T的作用,由于軸上重力而產(chǎn)生的彎矩很小,可以忽略不計。轉(zhuǎn)動零件的各表面都經(jīng)過機(jī)械加工,零件幾何形狀都是對稱的,高速旋轉(zhuǎn)時對軸產(chǎn)生的不平衡力矩較小,產(chǎn)生的彎矩可忽略不計。故軸的強(qiáng)度按轉(zhuǎn)矩進(jìn)行計算。
軸的最小直徑可按公式:
≥=27.1mm (4.1)
來確定。
式中,—功率(104KW);
—轉(zhuǎn)速(6000r/min);
—許用扭應(yīng)力(25~45MP 取40MP);
畢業(yè)設(shè)計(論文)
故本設(shè)計中取=30符合強(qiáng)度要求。最小段符合要求,其它各段一定符合要求。
4.2.2輸出軸的初選與校核
從動軸的最小直徑同前可得:
≥=40.6mm (4.2)
來確定。
式中,——功率(100KW);
——轉(zhuǎn)速(6000r/min);
——許用扭應(yīng)力(25~45MP 取40MP);
同樣在這里取=42mm符合要求。
4.3軸承的選擇
軸承分兩類:滾動軸承和滑動軸承。磁流變液離合器所需的軸承,主要承受因主機(jī)重力而產(chǎn)生的徑向負(fù)荷,同時考慮軸向定位。但磁流變液離合器主要受徑向負(fù)荷,因此根據(jù)尺寸要求選用圓錐滾子軸承。根據(jù)其內(nèi)徑為45,選取圓錐滾子軸承30202。
根據(jù)軸徑d=45mm,查機(jī)械設(shè)計手冊選取圓錐滾子軸承,=68mm,=15mm。
軸承的當(dāng)量動負(fù)荷為:
式中, —軸承的當(dāng)量動負(fù)荷(N);
—軸承徑向負(fù)荷(N);
—動負(fù)荷系數(shù),平穩(wěn)或微沖擊λ=1.0-1.2,中等沖擊=1.2~1.8 。
軸承壽命為:
= (4.3)
式中, —軸承壽命((h);
—軸承轉(zhuǎn)速(r/min);
—當(dāng)量動載荷(N);
—軸承的額定動負(fù)荷(N);
由手冊查出,根據(jù)計算,選擇軸承的型號為30202。軸承的壽命由工作需要而定,一般不得小于10000h[8]。
4.3.1軸的結(jié)構(gòu)設(shè)計
a.輸入軸(圖4.1)
圖 4.1 輸入軸
輸入軸的最小直徑在安裝聯(lián)軸器的花鍵處,聯(lián)軸器的計算轉(zhuǎn)矩,取KA=1.3,則:
查《機(jī)械設(shè)計綜合課程設(shè)計》手冊表6-97,選用YL11型凸緣聯(lián)軸器,其公稱轉(zhuǎn)矩為。半聯(lián)軸器的孔徑為45mm,故取,,CD段裝有圓錐滾子軸承,查《機(jī)械設(shè)計綜合課程設(shè)計》表6-67選孔徑為50mm的30210型圓錐滾子軸承與之配合其尺寸為d×D×T×B×C×a=50mm×90mm×21.75mm×20mm×17mm×20mm,故取DE段固定齒輪,故取,根據(jù)整體結(jié)構(gòu)取FG處是齒輪軸上的紙輪6,分度圓直徑GH段安裝滾針軸承,由于只承受彎矩故可取,滾針軸承尺寸d×D×C=40×45×27。
b.后橋輸出軸(圖4.2)
圖 4.2 后橋輸出軸
為了防止兩軸研合到一起引起兩周對接卡死,輸入軸與后橋輸出軸間留有
0.5mm的間隙,IK段是齒輪軸上的齒輪3,分度圓直徑
KL段安裝軸承,查表取孔徑70mm的30214型圓錐滾子軸承,其尺寸為
d×D×T×B×C×a=70mm×125mm×26.25mm×24mm×21mm×25.8mm
故,LM段根據(jù)端蓋結(jié)構(gòu)取,MN段安裝軸承,查表選取孔徑為65mm的30213型圓錐滾子軸承,其尺寸為d×D×T×B×C×a=65mm×120mm×24.75mm×23mm×20mm×23.8mm
取NO段安裝輸出軸聯(lián)軸器,
取。
c.中間軸(圖4.3)
圖 4.3 中間軸
de段是嚙合套外齒輪8,分度圓直徑,,嚙合套齒輪8與兩邊的齒輪7、2各留有0.5mm的間隙。
齒輪7、2的總齒寬為45mm,齒輪2、4間留有間隙5mm,所以,bc、fg段安裝軸承,取孔徑為50mm的30210型圓錐滾子軸承,,ab、gh段做成螺紋用于軸的兩端固定,取。
d.中橋輸出軸(圖4.4)
圖 4.4 中橋輸出軸
ef段安裝齒輪5,取,bc、fg段安裝軸承,取孔徑為60mm的30212型圓錐滾子軸承。
其尺寸為d×D×T×B×C×a=60mm×110mm×23.75mm×22mm×19mm×22.3mm,其中,de、cd段根據(jù)結(jié)構(gòu)取,,ab段漸開線齒輪分度圓直徑,gh段安裝聯(lián)軸器,。
e.前橋輸出軸(圖4.5)
圖 4.5 前橋輸出軸
cd段齒輪分度圓直徑,bc段安裝一對圓錐滾子軸承,取孔徑為50mm的30210型圓錐滾子軸承,,ab段安裝聯(lián)軸器,取。
4.4鍵的計算
平鍵聯(lián)接受額定轉(zhuǎn)距作用時,鍵的側(cè)面受擠壓,主截面受剪切力,可能的失效形式是工作面壓潰或鍵剪斷。對于實際采用的材料和按標(biāo)準(zhǔn)選用的平鍵來說,壓潰是主要的失效形式。因而平鍵聯(lián)接的強(qiáng)度常按鍵側(cè)的擠壓應(yīng)力來計算。
軸與半聯(lián)軸器用單鍵聯(lián)接,其擠壓應(yīng)力為:
=≤ (4.4)
式中, —鍵聯(lián)接的擠壓應(yīng)力(Pa);
—鍵與聯(lián)軸器的接觸高度,對平鍵可取鍵高的一半,;
—額定轉(zhuǎn)距(Nm);
—軸的直徑(m);
—鍵的工作長度(m),對于圓頭普通平鍵可取為鍵全長與鍵寬之差;
—鍵聯(lián)接許用擠壓應(yīng)力(MPa);
在第一段軸上選用圓頭普通平鍵,根據(jù)=35mm,查得鍵的截面尺寸為:寬度=10mm,高度=8mm。取鍵長=26mm 。鍵的工作長度1==40-10=16mm。鍵與鍵槽的接觸高度=0.5=4mm。其擠壓應(yīng)力為:
=<=110MPa
所以所選鍵符合強(qiáng)度要求。
同理第二周選用圓頭普通平鍵的擠壓應(yīng)力為:
=<=110MPa
所以所選鍵符合強(qiáng)度要求。
5 同步器
5 同步器
同步器使變速器換擋輕便、迅速,無沖擊,無噪聲,且可延長齒輪壽命,提高礦車的加速性能并節(jié)油,故轎車變速器除倒檔、貨車1檔,倒檔外,其它檔位多裝用。要求其轉(zhuǎn)矩容量較大,性能穩(wěn)定、耐用。
5.1同步器的結(jié)構(gòu)類型
慣性同步器能確保同步嚙合換擋,性能穩(wěn)定、可靠,因此在現(xiàn)代礦車變速器中得到了最廣泛的應(yīng)用。它又分為慣性鎖止器和慣性增力式。用得最廣的是鎖環(huán)式、鎖銷式等慣性鎖止式同步器,它們雖結(jié)構(gòu)有別,但工作原理無異,都有摩擦原件、鎖止原件和彈性原件。掛擋時,在軸向力作用下摩擦原件相靠,在慣性轉(zhuǎn)矩作用下產(chǎn)生摩擦力矩,使被結(jié)合的兩部分逐漸同步;鎖止原件用于阻止同步前強(qiáng)行掛擋;彈性原件使嚙合套等在空擋時保持中間位置,又不妨礙整個結(jié)合和分離過程。
本設(shè)計采用鎖環(huán)式同步器又稱鎖止式、齒環(huán)式或滑塊式,其工作可靠、耐用,因摩擦半面受限,轉(zhuǎn)矩容量不大,適于輕型以下礦車,廣泛用于轎車及輕型客、貨車。
5.2鎖環(huán)式同步器的工作原理
在分析與計算中考慮到常溫條件下潤滑油阻力對齒輪轉(zhuǎn)速的影響可以忽略不計,并假設(shè)在同步過程中車速保持不變,這一假設(shè)在道路阻力系數(shù)≤0.15同步器時間時≤1s是符合實際的。由于變速器輸出端的轉(zhuǎn)速在換擋瞬時保持不變,而輸入端靠摩擦作用達(dá)到與輸出端同步。如圖6.1、6.2同步器的計算模型:
6.1同步器的計算模
畢業(yè)設(shè)計(論文)
6.2同步器的計算模型
現(xiàn)建立輸入端慣性質(zhì)量的運(yùn)動方程:
(5.1)
將上式積分得
由上式可得同步時間:
(5.2)
將上式中的以摩擦面所受的軸向力代替,則
(5.3)
同步器摩擦錐面的滑磨功
(5.4)
將其代入上式,并將其中的值用式代入,得
(5.5)
同步器的滑磨功與其摩擦面積之比
(5.6)
稱為同步器的比滑磨功。對高檔同步器值應(yīng)不大于0.2J/m2;而對低檔同步器則應(yīng)不大于(0.3~0.5)J/m2。為了阻止同步前掛擋,則要求摩擦力矩大于脫鎖力矩,若忽略鎖止面的摩擦系數(shù),以鎖環(huán)式同步器為列,如圖(b)所示:
根據(jù)Tf≥TT ,則可建立同步器的鎖止條件:
5.3慣性鎖止式同步器的主要結(jié)構(gòu)參數(shù)
5.3.1摩擦錐面的半錐角和摩擦系數(shù)
愈小則摩擦力矩愈大,故為增大同步器容量值應(yīng)取小一些,但為了避免摩擦面的自鎖應(yīng)使大于摩擦角,后者與摩擦系數(shù)有關(guān),即=。推薦,=(7~8)的上限允許到12。當(dāng)取=6時摩擦力矩較大,但當(dāng)錐面粗糙度、潤滑油種類及溫度等因素的不同而異。一般,在油中工作的青銅-鋼同步器摩擦副,可按=0.1計算。通常,在內(nèi)錐面上制有破壞油膜的細(xì)牙螺紋槽,以提高摩擦系數(shù)f的值。螺紋槽的齒頂寬要窄一些以利刮油,可取0.1mm左右或更小些,齒頂越尖則接觸面上的壓強(qiáng)和磨損就越大。螺距可取0.6~0.75mm,螺紋角一般取50~60。再者,齒頂所在的錐表面的加工精度及粗糙度要求高,不允許有切削刀痕,最后進(jìn)行研磨。軸向泄油槽一般為6個,槽寬約3mm,槽深要剛好達(dá)到螺紋槽深。
5.3.2摩擦錐面的平均半徑和同步錐環(huán)的徑向厚度
和都受到變速器齒輪中心距及有關(guān)零部件的尺寸和布置上的限制。當(dāng)結(jié)構(gòu)布置允許時,和應(yīng)盡量取大些。
5.3.3摩擦錐面的工作面寬
同步錐環(huán)的工作面寬,受到變速器總長的尺寸限制,也要為散熱和耐磨損提供足夠大的摩擦面積。可根據(jù)摩擦表面的許用壓力來確定:
,MPa (5.7)
對于鎖銷式同步器≈(0.14~0.2)
=100N, =0.1, =8
得=14mm =6mm
5.3.4鎖止角
由公式(5-10)得出,通常在26~40范圍內(nèi)。
,得出mm
5.3.5同步時間與軸向推力
和是一對相互影響的可變參數(shù)。應(yīng)按以最短時間達(dá)到同步狀態(tài)來考慮軸向力的大小。而為使換擋輕便值又不能過大,一般在100~350N范圍內(nèi),轎車或輕型客、貨車取下限,重型車取上限。
5.3.6同步器摩擦副的材料
同步錐環(huán)多用銅基合金制造,轎車同步錐環(huán)較薄,亦用鍛、精鍛或冷擠壓工藝加工;貨車的同步錐環(huán)較厚,亦可采用壓鑄工藝。選用材料時既要考慮其摩擦系數(shù)又要考慮其耐磨性以及強(qiáng)度、加工性能等。鋁青銅(含鋁8.5%~11.0%)多用于壓鑄的同步錐環(huán),亦可鑄造,其強(qiáng)度高、耐磨性好、摩擦系數(shù)較大而錐面自鎖傾向較小。錳青銅(含錳≤3%)鍛造的同步錐環(huán)較多,,其摩擦系數(shù)亦在鋼-銅合金摩擦副的摩擦系數(shù)范圍內(nèi),特別使用于大型其強(qiáng)度高、加工性好。硅錳青銅(含硅0.6%~1.5%,錳2%~4%)的性能與錳青銅類似,這種合金結(jié)構(gòu)中的硅化錳使之具有極好的耐磨性。鍛造同步錐環(huán)也常采用鉛黃銅、黃銅的耐磨性常常優(yōu)于青銅。近年來出現(xiàn)了高強(qiáng)度、高耐磨性的鋼-鉬配合的摩擦副,即在鋼或球墨鑄鐵同步錐環(huán)的錐面上噴鍍厚約0.6~0.8mm的鉬礦車的同步器。與同步錐環(huán)組成摩擦副的錐表面多與被同步的傳動齒輪及其結(jié)合齒做成一體,由低碳合金鋼制造,滲碳淬火后表面硬度約為HRC60。
6 工藝分析
6 工藝分析
6.1殼體加工工藝
殼體零件在整個分動器總成中的作用,是保證其零部件占據(jù)合理的正確位置,使之有一個協(xié)調(diào)的基礎(chǔ)構(gòu)件,其質(zhì)量的優(yōu)劣直接影響到軸和齒輪等零件互相位置的準(zhǔn)確性及分動器總成使用的靈活性和壽命。
殼體選用HT200材料鑄造制成,主要的加工表面為平面和軸承孔。
殼體的機(jī)械加工過程按照先面后孔的原則,最后加工螺紋孔。殼體的機(jī)械加工工藝過程基本上分三個階段,即粗加工、半精加工和精加工階段。
表6.1 高低速檔換檔撥叉機(jī)械加工工藝過程卡
工序號
工序名稱
工 序 內(nèi) 容
工藝裝備
1
鑄
精密鑄造,兩件合鑄
2
熱處理
退火
3
劃線
劃各端面線和孔的中心線
4
車
以外形及下端面定位,按線找正,專用夾具裝夾工件。車mm孔至圖樣要求,并車孔的兩側(cè)面,保證尺寸
C620 專用工裝
5
銑
以mm 孔及上端面定位,裝夾工件,銑Φ55m下端面,保證尺寸12.5mm.
X52k
組合夾具
6
銑
以mm 孔及下端面定位,裝夾工件,銑
收藏