山東省青島市2018年中考數(shù)學(xué)試卷及答案解析
《山東省青島市2018年中考數(shù)學(xué)試卷及答案解析》由會員分享,可在線閱讀,更多相關(guān)《山東省青島市2018年中考數(shù)學(xué)試卷及答案解析(34頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2018年山東省青島市中考數(shù)學(xué)試卷 一、選擇題:本大題共8個(gè)小題,每小題3分,共24分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.(3分)觀察下列四個(gè)圖形,中心對稱圖形是( ?。? A. B. C. D. 2.(3分)斑葉蘭被列為國家二級保護(hù)植物,它的一粒種子重約0.0000005克.將0.0000005用科學(xué)記數(shù)法表示為( ?。? A.5107 B.510﹣7 C.0.510﹣6 D.510﹣6 3.(3分)如圖,點(diǎn)A所表示的數(shù)的絕對值是( ?。? A.3 B.﹣3 C. D. 4.(3分)計(jì)算(a2)3﹣5a3?a3的結(jié)果是( ) A.a(chǎn)5﹣5a6 B.a(chǎn)6﹣5a9 C.﹣4a6 D.4a6 5.(3分)如圖,點(diǎn)A、B、C、D在⊙O上,∠AOC=140,點(diǎn)B是的中點(diǎn),則∠D的度數(shù)是( ?。? A.70 B.55 C.35.5 D.35 6.(3分)如圖,三角形紙片ABC,AB=AC,∠BAC=90,點(diǎn)E為AB中點(diǎn).沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F.已知EF=,則BC的長是( ?。? A. B. C.3 D. 7.(3分)如圖,將線段AB繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90,得到線段AB,其中點(diǎn)A、B的對應(yīng)點(diǎn)分別是點(diǎn)A、B,則點(diǎn)A的坐標(biāo)是( ?。? A.(﹣1,3) B.(4,0) C.(3,﹣3) D.(5,﹣1) 8.(3分)已知一次函數(shù)y=x+c的圖象如圖,則二次函數(shù)y=ax2+bx+c在平面直角坐標(biāo)系中的圖象可能是( ?。? A. B. C. D. 二、填空題(每題3分,滿分18分,將答案填在答題紙上) 9.(3分)已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2 S乙2(填“>”、“=”、“<”) 10.(3分)計(jì)算:2﹣1+2cos30= ?。? 11.(3分)5月份,甲、乙兩個(gè)工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個(gè)工廠6月份用水量共為174噸,求兩個(gè)工廠5月份的用水量各是多少.設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關(guān)于x,y的方程組為 ?。? 12.(3分)如圖,已知正方形ABCD的邊長為5,點(diǎn)E、F分別在AD、DC上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為 ?。? 13.(3分)如圖,Rt△ABC,∠B=90,∠C=30,O為AC上一點(diǎn),OA=2,以O(shè)為圓心,以 OA為半徑的圓與CB相切于點(diǎn)E,與AB相交于點(diǎn)F,連接OE、OF,則圖中陰影部分的面積是 ?。? 14.(3分)一個(gè)由16個(gè)完全相同的小立方塊搭成的幾何體,其最下面一層擺放了9個(gè)小立方塊,它的主視圖和左視圖如圖所示,那么這個(gè)幾何體的搭法共有 種. 三、作圖題:本大題滿分4分. 15.(4分)已知:如圖,∠ABC,射線BC上一點(diǎn)D. 求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等. 四、解答題(本大題共9小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.) 16.(8分)(1)解不等式組: (2)化簡:(﹣2)?. 17.(6分)小明和小亮計(jì)劃暑期結(jié)伴參加志愿者活動(dòng).小明想?yún)⒓泳蠢戏?wù)活動(dòng),小亮想?yún)⒓游拿鞫Y儀宣傳活動(dòng).他們想通過做游戲來決定參加哪個(gè)活動(dòng),于是小明設(shè)計(jì)了一個(gè)游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標(biāo)記4、5、6三個(gè)數(shù)字,一人先從三張卡片中隨機(jī)抽出一張,記下數(shù)字后放回,另一人再從中隨機(jī)抽出一張,記下數(shù)字,若抽出的兩張卡片標(biāo)記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動(dòng),若抽出的兩張卡片標(biāo)記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動(dòng).你認(rèn)為這個(gè)游戲公平嗎?請說明理由. 18.(6分)八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖. 請根據(jù)圖中信息解決下列問題: (1)共有 名同學(xué)參與問卷調(diào)查; (2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖; (3)全校共有學(xué)生1500人,請估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少. 19.(6分)某區(qū)域平面示意圖如圖,點(diǎn)O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點(diǎn)O位于北偏東45,乙勘測員在B處測得點(diǎn)O位于南偏西73.7,測得AC=840m,BC=500m.請求出點(diǎn)O到BC的距離. 參考數(shù)據(jù):sin73.7≈,cos73.7≈,tan73.7≈ 20.(8分)已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0. (1)當(dāng)y1﹣y2=4時(shí),求m的值; (2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請寫出點(diǎn)P坐標(biāo)(不需要寫解答過程). 21.(8分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD. (1)求證:AB=AF; (2)若AG=AB,∠BCD=120,判斷四邊形ACDF的形狀,并證明你的結(jié)論. 22.(10分)某公司投入研發(fā)費(fèi)用80萬元(80萬元只計(jì)入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬件)與售價(jià)x(元/件)之間滿足函數(shù)關(guān)系式y(tǒng)=﹣x+26. (1)求這種產(chǎn)品第一年的利潤W1(萬元)與售價(jià)x(元/件)滿足的函數(shù)關(guān)系式; (2)該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價(jià)是多少? (3)第二年,該公司將第一年的利潤20萬元(20萬元只計(jì)入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過12萬件.請計(jì)算該公司第二年的利潤W2至少為多少萬元. 23.(10分)問題提出:用若干相同的一個(gè)單位長度的細(xì)直木棒,按照如圖1方式搭建一個(gè)長方體框架,探究所用木棒條數(shù)的規(guī)律. 問題探究: 我們先從簡單的問題開始探究,從中找出解決問題的方法. 探究一 用若干木棒來搭建橫長是m,縱長是n的矩形框架(m、n是正整數(shù)),需要木棒的條數(shù). 如圖①,當(dāng)m=1,n=1時(shí),橫放木棒為1(1+1)條,縱放木棒為(1+1)1條,共需4條; 如圖②,當(dāng)m=2,n=1時(shí),橫放木棒為2(1+1)條,縱放木棒為(2+1)1條,共需7條; 如圖③,當(dāng)m=2,n=2時(shí),橫放木棒為2(2+1))條,縱放木棒為(2+1)2條,共需12條;如圖④,當(dāng)m=3,n=1時(shí),橫放木棒為3(1+1)條,縱放木棒為(3+1)1條,共需10條; 如圖⑤,當(dāng)m=3,n=2時(shí),橫放木棒為3(2+1)條,縱放木棒為(3+1)2條,共需17條. 問題(一):當(dāng)m=4,n=2時(shí),共需木棒 條. 問題(二):當(dāng)矩形框架橫長是m,縱長是n時(shí),橫放的木棒為 條, 縱放的木棒為 條. 探究二 用若干木棒來搭建橫長是m,縱長是n,高是s的長方體框架(m、n、s是正整數(shù)),需要木棒的條數(shù). 如圖⑥,當(dāng)m=3,n=2,s=1時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](1+1)=34條,豎放木棒為(3+1)(2+1)1=12條,共需46條; 如圖⑦,當(dāng)m=3,n=2,s=2時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](2+1)=51條,豎放木棒為(3+1)(2+1)2=24條,共需75條; 如圖⑧,當(dāng)m=3,n=2,s=3時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](3+1)=68條,豎放木棒為(3+1)(2+1)3=36條,共需104條. 問題(三):當(dāng)長方體框架的橫長是m,縱長是n,高是s時(shí),橫放與縱放木棒條數(shù)之和為 條,豎放木棒條數(shù)為 條. 實(shí)際應(yīng)用:現(xiàn)在按探究二的搭建方式搭建一個(gè)縱長是2、高是4的長方體框架,總共使用了170條木棒,則這個(gè)長方體框架的橫長是 . 拓展應(yīng)用:若按照如圖2方式搭建一個(gè)底面邊長是10,高是5的正三棱柱框架,需要木棒 條. 24.(12分)已知:如圖,四邊形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,動(dòng)點(diǎn)P從點(diǎn)D開始沿DA邊勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開始沿AB邊勻速運(yùn)動(dòng),它們的運(yùn)動(dòng)速度均為2cm/s.點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),以QA、QP為邊作平行四邊形AQPE,設(shè)運(yùn)動(dòng)的時(shí)間為t(s),0<t<5. 根據(jù)題意解答下列問題: (1)用含t的代數(shù)式表示AP; (2)設(shè)四邊形CPQB的面積為S(cm2),求S與t的函數(shù)關(guān)系式; (3)當(dāng)QP⊥BD時(shí),求t的值; (4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使點(diǎn)E在∠ABD的平分線上?若存在,求出t的值;若不存在,請說明理由. 2018年山東省青島市中考數(shù)學(xué)試卷 參考答案與試題解析 一、選擇題:本大題共8個(gè)小題,每小題3分,共24分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.(3分)觀察下列四個(gè)圖形,中心對稱圖形是( ?。? A. B. C. D. 【分析】根據(jù)中心對稱圖形的概念對各選項(xiàng)分析判斷即可得解. 【解答】解:A、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤; B、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤; C、是中心對稱圖形,故本選項(xiàng)正確; D、不是中心對稱圖形,故本選項(xiàng)錯(cuò)誤. 故選:C. 【點(diǎn)評】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合. 2.(3分)斑葉蘭被列為國家二級保護(hù)植物,它的一粒種子重約0.0000005克.將0.0000005用科學(xué)記數(shù)法表示為( ?。? A.5107 B.510﹣7 C.0.510﹣6 D.510﹣6 【分析】絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定. 【解答】解:將0.0000005用科學(xué)記數(shù)法表示為510﹣7. 故選:B. 【點(diǎn)評】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定. 3.(3分)如圖,點(diǎn)A所表示的數(shù)的絕對值是( ?。? A.3 B.﹣3 C. D. 【分析】根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答即可. 【解答】解:|﹣3|=3, 故選:A. 【點(diǎn)評】此題考查絕對值問題,關(guān)鍵是根據(jù)負(fù)數(shù)的絕對值是其相反數(shù)解答. 4.(3分)計(jì)算(a2)3﹣5a3?a3的結(jié)果是( ?。? A.a(chǎn)5﹣5a6 B.a(chǎn)6﹣5a9 C.﹣4a6 D.4a6 【分析】直接利用冪的乘方運(yùn)算法則化簡,再利用單項(xiàng)式乘以單項(xiàng)式、合并同類項(xiàng)法則計(jì)算得出答案. 【解答】解:(a2)3﹣5a3?a3 =a6﹣5a6 =﹣4a6. 故選:C. 【點(diǎn)評】此題主要考查了冪的乘方運(yùn)算、單項(xiàng)式乘以單項(xiàng)式,正確掌握運(yùn)算法則是解題關(guān)鍵. 5.(3分)如圖,點(diǎn)A、B、C、D在⊙O上,∠AOC=140,點(diǎn)B是的中點(diǎn),則∠D的度數(shù)是( ?。? A.70 B.55 C.35.5 D.35 【分析】根據(jù)圓心角、弧、弦的關(guān)系定理得到∠AOB=∠AOC,再根據(jù)圓周角定理解答. 【解答】解:連接OB, ∵點(diǎn)B是的中點(diǎn), ∴∠AOB=∠AOC=70, 由圓周角定理得,∠D=∠AOB=35, 故選:D. 【點(diǎn)評】本題考查的是圓心角、弧、弦的關(guān)系定理、圓周角定理,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵. 6.(3分)如圖,三角形紙片ABC,AB=AC,∠BAC=90,點(diǎn)E為AB中點(diǎn).沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F.已知EF=,則BC的長是( ?。? A. B. C.3 D. 【分析】由折疊的性質(zhì)可知∠B=∠EAF=45,所以可求出∠AFB=90,再直角三角形的性質(zhì)可知EF=AB,所以AB=AC的長可求,再利用勾股定理即可求出BC的長. 【解答】解: ∵沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合, ∴∠B=∠EAF=45, ∴∠AFB=90, ∵點(diǎn)E為AB中點(diǎn), ∴EF=AB,EF=, ∴AB=AC=3, ∵∠BAC=90, ∴BC==3, 故選:B. 【點(diǎn)評】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90是解題的關(guān)鍵. 7.(3分)如圖,將線段AB繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90,得到線段AB,其中點(diǎn)A、B的對應(yīng)點(diǎn)分別是點(diǎn)A、B,則點(diǎn)A的坐標(biāo)是( ?。? A.(﹣1,3) B.(4,0) C.(3,﹣3) D.(5,﹣1) 【分析】畫圖可得結(jié)論. 【解答】解:畫圖如下: 則A(5,﹣1), 故選:D. 【點(diǎn)評】本題考查了旋轉(zhuǎn)的性質(zhì),熟練掌握順時(shí)針或逆時(shí)針旋轉(zhuǎn)某個(gè)點(diǎn)或某直線的位置關(guān)系. 8.(3分)已知一次函數(shù)y=x+c的圖象如圖,則二次函數(shù)y=ax2+bx+c在平面直角坐標(biāo)系中的圖象可能是( ?。? A. B. C. D. 【分析】根據(jù)反比例函數(shù)圖象一次函數(shù)圖象經(jīng)過的象限,即可得出<0、c>0,由此即可得出:二次函數(shù)y=ax2+bx+c的圖象對稱軸x=﹣>0,與y軸的交點(diǎn)在y軸負(fù)正半軸,再對照四個(gè)選項(xiàng)中的圖象即可得出結(jié)論. 【解答】解:觀察函數(shù)圖象可知:<0、c>0, ∴二次函數(shù)y=ax2+bx+c的圖象對稱軸x=﹣>0,與y軸的交點(diǎn)在y軸負(fù)正半軸. 故選:A. 【點(diǎn)評】本題考查了一次函數(shù)的圖象以及二次函數(shù)的圖象,根據(jù)一次函數(shù)圖象經(jīng)過的象限,找出<0、c>0是解題的關(guān)鍵. 二、填空題(每題3分,滿分18分,將答案填在答題紙上) 9.(3分)已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2?。肌乙2(填“>”、“=”、“<”) 【分析】結(jié)合圖形,根據(jù)數(shù)據(jù)波動(dòng)較大的方差較大即可求解. 【解答】解:從圖看出:乙組數(shù)據(jù)的波動(dòng)較小,故乙的方差較小,即S甲2<S乙2. 故答案為:<. 【點(diǎn)評】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定. 10.(3分)計(jì)算:2﹣1+2cos30= 2?。? 【分析】根據(jù)特殊角的三角函數(shù)值和有理數(shù)的乘法和加法可以解答本題. 【解答】解:2﹣1+2cos30 = = =2, 故答案為:2. 【點(diǎn)評】本題考查實(shí)數(shù)的運(yùn)算、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法. 11.(3分)5月份,甲、乙兩個(gè)工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個(gè)工廠6月份用水量共為174噸,求兩個(gè)工廠5月份的用水量各是多少.設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關(guān)于x,y的方程組為 ?。? 【分析】設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)兩廠5月份的用水量及6月份的用水量,即可得出關(guān)于x、y的二元一次方程組,此題得解. 【解答】解:設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸, 根據(jù)題意得:. 故答案為:. 【點(diǎn)評】本題考查了二元一次方程組,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵. 12.(3分)如圖,已知正方形ABCD的邊長為5,點(diǎn)E、F分別在AD、DC上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為 ?。? 【分析】根據(jù)正方形的四條邊都相等可得AB=AD,每一個(gè)角都是直角可得∠BAE=∠D=90,然后利用“邊角邊”證明△ABE≌△DAF得∠ABE=∠DAF,進(jìn)一步得∠AGE=∠BGF=90,從而知GH=BF,利用勾股定理求出BF的長即可得出答案. 【解答】解:∵四邊形ABCD為正方形, ∴∠BAE=∠D=90,AB=AD, 在△ABE和△DAF中, ∵, ∴△ABE≌△DAF(SAS), ∴∠ABE=∠DAF, ∵∠ABE+∠BEA=90, ∴∠DAF+∠BEA=90, ∴∠AGE=∠BGF=90, ∵點(diǎn)H為BF的中點(diǎn), ∴GH=BF, ∵BC=5、CF=CD﹣DF=5﹣2=3, ∴BF==, ∴GH=BF=, 故答案為:. 【點(diǎn)評】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形兩銳角互余等知識,掌握三角形全等的判定方法與正方形的性質(zhì)是解題的關(guān)鍵. 13.(3分)如圖,Rt△ABC,∠B=90,∠C=30,O為AC上一點(diǎn),OA=2,以O(shè)為圓心,以 OA為半徑的圓與CB相切于點(diǎn)E,與AB相交于點(diǎn)F,連接OE、OF,則圖中陰影部分的面積是 ﹣π . 【分析】根據(jù)扇形面積公式以及三角形面積公式即可求出答案. 【解答】解:∵∠B=90,∠C=30, ∴∠A=60, ∵OA=OF, ∴△AOF是等邊三角形, ∴∠COF=120, ∵OA=2, ∴扇形OGF的面積為:= ∵OA為半徑的圓與CB相切于點(diǎn)E, ∴∠OEC=90, ∴OC=2OE=4, ∴AC=OC+OA=6, ∴AB=AC=3, ∴由勾股定理可知:BC=3 ∴△ABC的面積為:33= ∵△OAF的面積為:2=, ∴陰影部分面積為:﹣﹣π=﹣π 故答案為:﹣π 【點(diǎn)評】本題考查扇形面積公式,涉及含30度角的直角三角形的性質(zhì),勾股定理,切線的性質(zhì),扇形的面積公式等知識,綜合程度較高. 14.(3分)一個(gè)由16個(gè)完全相同的小立方塊搭成的幾何體,其最下面一層擺放了9個(gè)小立方塊,它的主視圖和左視圖如圖所示,那么這個(gè)幾何體的搭法共有 4 種. 【分析】先根據(jù)主視圖確定每一列最大分別為4,2,3,再根據(jù)左視確定每一行最大分別為4,3,2,總和要保證為16,還要保證俯視圖有9個(gè)位置. 【解答】解:這個(gè)幾何體的搭法共有4種:如下圖所示: 故答案為:4. 【點(diǎn)評】本題考查幾何體的三視圖.由幾何體的主視圖、左視圖及小立方塊的個(gè)數(shù),可知俯視圖的列數(shù)和行數(shù)中的最大數(shù)字. 三、作圖題:本大題滿分4分. 15.(4分)已知:如圖,∠ABC,射線BC上一點(diǎn)D. 求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等. 【分析】根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題. 【解答】解:∵點(diǎn)P在∠ABC的平分線上, ∴點(diǎn)P到∠ABC兩邊的距離相等(角平分線上的點(diǎn)到角的兩邊距離相等), ∵點(diǎn)P在線段BD的垂直平分線上, ∴PB=PD(線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等), 如圖所示: 【點(diǎn)評】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于基礎(chǔ)題,中考??碱}型. 四、解答題(本大題共9小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.) 16.(8分)(1)解不等式組: (2)化簡:(﹣2)?. 【分析】(1)先求出各不等式的解集,再求出其公共解集即可. (2)根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則計(jì)算可得. 【解答】解:(1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 則不等式組的解集為﹣1<x<5; (2)原式=(﹣)? =? =. 【點(diǎn)評】本題主要考查分式的混合運(yùn)算和解一元一次不等式組,解題的關(guān)鍵是掌握解一元一次不等式組的步驟和分式混合運(yùn)算順序和運(yùn)算法則. 17.(6分)小明和小亮計(jì)劃暑期結(jié)伴參加志愿者活動(dòng).小明想?yún)⒓泳蠢戏?wù)活動(dòng),小亮想?yún)⒓游拿鞫Y儀宣傳活動(dòng).他們想通過做游戲來決定參加哪個(gè)活動(dòng),于是小明設(shè)計(jì)了一個(gè)游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標(biāo)記4、5、6三個(gè)數(shù)字,一人先從三張卡片中隨機(jī)抽出一張,記下數(shù)字后放回,另一人再從中隨機(jī)抽出一張,記下數(shù)字,若抽出的兩張卡片標(biāo)記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動(dòng),若抽出的兩張卡片標(biāo)記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動(dòng).你認(rèn)為這個(gè)游戲公平嗎?請說明理由. 【分析】首先根據(jù)題意列表,然后根據(jù)表求得所有等可能的結(jié)果與和為奇數(shù)、偶數(shù)的情況,再利用概率公式求解即可. 【解答】解:不公平, 列表如下: 4 5 6 4 8 9 10 5 9 10 11 6 10 11 12 由表可知,共有9種等可能結(jié)果,其中和為偶數(shù)的有5種結(jié)果,和為奇數(shù)的有4種結(jié)果, 所以按照小明的想法參加敬老服務(wù)活動(dòng)的概率為,按照小亮的想法參加文明禮儀宣傳活動(dòng)的概率為, 由≠知這個(gè)游戲不公平; 【點(diǎn)評】此題考查了列表法求概率.注意樹狀圖與列表法可以不重不漏的表示出所有等可能的情況.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比. 18.(6分)八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖. 請根據(jù)圖中信息解決下列問題: (1)共有 100 名同學(xué)參與問卷調(diào)查; (2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖; (3)全校共有學(xué)生1500人,請估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少. 【分析】(1)由讀書1本的人數(shù)及其所占百分比可得總?cè)藬?shù); (2)總?cè)藬?shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總?cè)藬?shù)可得對應(yīng)百分比; (3)總?cè)藬?shù)乘以樣本中讀2本人數(shù)所占比例. 【解答】解:(1)參與問卷調(diào)查的學(xué)生人數(shù)為(8+2)10%=100人, 故答案為:100; (2)讀4本的女生人數(shù)為10015%﹣10=5人, 讀2本人數(shù)所占百分比為100%=38%, 補(bǔ)全圖形如下: (3)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為150038%=570人. 【點(diǎn)評】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小. 19.(6分)某區(qū)域平面示意圖如圖,點(diǎn)O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點(diǎn)O位于北偏東45,乙勘測員在B處測得點(diǎn)O位于南偏西73.7,測得AC=840m,BC=500m.請求出點(diǎn)O到BC的距離. 參考數(shù)據(jù):sin73.7≈,cos73.7≈,tan73.7≈ 【分析】作OM⊥BC于M,ON⊥AC于N,設(shè)OM=x,根據(jù)矩形的性質(zhì)用x表示出OM、MC,根據(jù)正切的定義用x表示出BM,根據(jù)題意列式計(jì)算即可. 【解答】解:作OM⊥BC于M,ON⊥AC于N, 則四邊形ONCM為矩形, ∴ON=MC,OM=NC, 設(shè)OM=x,則NC=x,AN=840﹣x, 在Rt△ANO中,∠OAN=45, ∴ON=AN=840﹣x,則MC=ON=840﹣x, 在Rt△BOM中,BM==x, 由題意得,840﹣x+x=500, 解得,x=480, 答:點(diǎn)O到BC的距離為480m. 【點(diǎn)評】本題考查的是解直角三角形的應(yīng)用,掌握銳角三角函數(shù)的定義、正確標(biāo)注方向角是解題的關(guān)鍵. 20.(8分)已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0. (1)當(dāng)y1﹣y2=4時(shí),求m的值; (2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請寫出點(diǎn)P坐標(biāo)(不需要寫解答過程). 【分析】(1)先根據(jù)反比例函數(shù)的圖象經(jīng)過點(diǎn)A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=,再由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出y1==,y2==,然后根據(jù)y1﹣y2=4列出方程﹣=4,解方程即可求出m的值; (2)設(shè)BD與x軸交于點(diǎn)E.根據(jù)三角形PBD的面積是8列出方程??PE=8,求出PE=4m,再由E(2m,0),點(diǎn)P在x軸上,即可求出點(diǎn)P的坐標(biāo). 【解答】解:(1)設(shè)反比例函數(shù)的解析式為y=, ∵反比例函數(shù)的圖象經(jīng)過點(diǎn)A(﹣4,﹣3), ∴k=﹣4(﹣3)=12, ∴反比例函數(shù)的解析式為y=, ∵反比例函數(shù)的圖象經(jīng)過點(diǎn)B(2m,y1),C(6m,y2), ∴y1==,y2==, ∵y1﹣y2=4, ∴﹣=4, ∴m=1; (2)設(shè)BD與x軸交于點(diǎn)E. ∵點(diǎn)B(2m,),C(6m,),過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D, ∴D(2m,),BD=﹣=. ∵三角形PBD的面積是8, ∴BD?PE=8, ∴??PE=8, ∴PE=4m, ∵E(2m,0),點(diǎn)P在x軸上, ∴點(diǎn)P坐標(biāo)為(﹣2m,0)或(6m,0). 【點(diǎn)評】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及三角形的面積,正確求出雙曲線的解析式是解題的關(guān)鍵. 21.(8分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD. (1)求證:AB=AF; (2)若AG=AB,∠BCD=120,判斷四邊形ACDF的形狀,并證明你的結(jié)論. 【分析】(1)只要證明AB=CD,AF=CD即可解決問題; (2)結(jié)論:四邊形ACDF是矩形.根據(jù)對角線相等的平行四邊形是矩形判斷即可; 【解答】(1)證明:∵四邊形ABCD是平行四邊形, ∴BE∥CD,AB=CD, ∴∠AFC=∠DCG, ∵GA=GD,∠AGF=∠CGD, ∴△AGF≌△DGC, ∴AF=CD, ∴AB=CF. (2)解:結(jié)論:四邊形ACDF是矩形. 理由:∵AF=CD,AF∥CD, ∴四邊形ACDF是平行四邊形, ∵四邊形ABCD是平行四邊形, ∴∠BAD=∠BCD=120, ∴∠FAG=60, ∵AB=AG=AF, ∴△AFG是等邊三角形, ∴AG=GF, ∵△AGF≌△DGC, ∴FG=CG,∵AG=GD, ∴AD=CF, ∴四邊形ACDF是矩形. 【點(diǎn)評】本題考查平行四邊形的判定和性質(zhì)、矩形的判定、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型. 22.(10分)某公司投入研發(fā)費(fèi)用80萬元(80萬元只計(jì)入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬件)與售價(jià)x(元/件)之間滿足函數(shù)關(guān)系式y(tǒng)=﹣x+26. (1)求這種產(chǎn)品第一年的利潤W1(萬元)與售價(jià)x(元/件)滿足的函數(shù)關(guān)系式; (2)該產(chǎn)品第一年的利潤為20萬元,那么該產(chǎn)品第一年的售價(jià)是多少? (3)第二年,該公司將第一年的利潤20萬元(20萬元只計(jì)入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過12萬件.請計(jì)算該公司第二年的利潤W2至少為多少萬元. 【分析】(1)根據(jù)總利潤=每件利潤銷售量﹣投資成本,列出式子即可; (2)構(gòu)建方程即可解決問題; (3)根據(jù)題意求出自變量的取值范圍,再根據(jù)二次函數(shù),利用而學(xué)會設(shè)的性質(zhì)即可解決問題; 【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236. (2)由題意:20=﹣x2+32x﹣236. 解得:x=16, 答:該產(chǎn)品第一年的售價(jià)是16元. (3)由題意:7≤x≤16, W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150, ∵7≤x≤16, ∴x=7時(shí),W2有最小值,最小值=18(萬元), 答:該公司第二年的利潤W2至少為18萬元. 【點(diǎn)評】本題考查二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學(xué)會構(gòu)建方程或函數(shù)解決問題,屬于中考??碱}型. 23.(10分)問題提出:用若干相同的一個(gè)單位長度的細(xì)直木棒,按照如圖1方式搭建一個(gè)長方體框架,探究所用木棒條數(shù)的規(guī)律. 問題探究: 我們先從簡單的問題開始探究,從中找出解決問題的方法. 探究一 用若干木棒來搭建橫長是m,縱長是n的矩形框架(m、n是正整數(shù)),需要木棒的條數(shù). 如圖①,當(dāng)m=1,n=1時(shí),橫放木棒為1(1+1)條,縱放木棒為(1+1)1條,共需4條; 如圖②,當(dāng)m=2,n=1時(shí),橫放木棒為2(1+1)條,縱放木棒為(2+1)1條,共需7條; 如圖③,當(dāng)m=2,n=2時(shí),橫放木棒為2(2+1))條,縱放木棒為(2+1)2條,共需12條;如圖④,當(dāng)m=3,n=1時(shí),橫放木棒為3(1+1)條,縱放木棒為(3+1)1條,共需10條; 如圖⑤,當(dāng)m=3,n=2時(shí),橫放木棒為3(2+1)條,縱放木棒為(3+1)2條,共需17條. 問題(一):當(dāng)m=4,n=2時(shí),共需木棒 22 條. 問題(二):當(dāng)矩形框架橫長是m,縱長是n時(shí),橫放的木棒為 m(n+1) 條, 縱放的木棒為 n(m+1) 條. 探究二 用若干木棒來搭建橫長是m,縱長是n,高是s的長方體框架(m、n、s是正整數(shù)),需要木棒的條數(shù). 如圖⑥,當(dāng)m=3,n=2,s=1時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](1+1)=34條,豎放木棒為(3+1)(2+1)1=12條,共需46條; 如圖⑦,當(dāng)m=3,n=2,s=2時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](2+1)=51條,豎放木棒為(3+1)(2+1)2=24條,共需75條; 如圖⑧,當(dāng)m=3,n=2,s=3時(shí),橫放與縱放木棒之和為[3(2+1)+(3+1)2](3+1)=68條,豎放木棒為(3+1)(2+1)3=36條,共需104條. 問題(三):當(dāng)長方體框架的橫長是m,縱長是n,高是s時(shí),橫放與縱放木棒條數(shù)之和為 [m(n+1)+n(m+1)](s+1) 條,豎放木棒條數(shù)為?。╩+1)(n+1)s 條. 實(shí)際應(yīng)用:現(xiàn)在按探究二的搭建方式搭建一個(gè)縱長是2、高是4的長方體框架,總共使用了170條木棒,則這個(gè)長方體框架的橫長是 4?。? 拓展應(yīng)用:若按照如圖2方式搭建一個(gè)底面邊長是10,高是5的正三棱柱框架,需要木棒 1320 條. 【分析】從特殊到一般探究規(guī)律后利用規(guī)律即可解決問題; 【解答】解:問題(一):當(dāng)m=4,n=2時(shí),橫放木棒為4(2+1)條,縱放木棒為(4+1)2條,共需22條; 問題(二):當(dāng)矩形框架橫長是m,縱長是n時(shí),橫放的木棒為 m(n+1)條,縱放的木棒為n(m+1)條; 問題(三):當(dāng)長方體框架的橫長是m,縱長是n,高是s時(shí),橫放與縱放木棒條數(shù)之和為[m(n+1)+n(m+1)](s+1)條,豎放木棒條數(shù)為(m+1)(n+1)s條. 實(shí)際應(yīng)用:這個(gè)長方體框架的橫長是 s,則:[3m+2(m+1)]5+(m+1)34=170,解得m=4, 拓展應(yīng)用:若按照如圖2方式搭建一個(gè)底面邊長是10,高是5的正三棱柱框架,橫放與縱放木棒條數(shù)之和為1656=990條,豎放木棒條數(shù)為605=330條需要木棒1320條. 故答案為22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320; 【點(diǎn)評】本題考查規(guī)律型﹣圖形變化類問題,解題的關(guān)鍵是理解題意,學(xué)會用分類討論的思想解決問題,屬于中考填空題中的壓軸題. 24.(12分)已知:如圖,四邊形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,動(dòng)點(diǎn)P從點(diǎn)D開始沿DA邊勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開始沿AB邊勻速運(yùn)動(dòng),它們的運(yùn)動(dòng)速度均為2cm/s.點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),以QA、QP為邊作平行四邊形AQPE,設(shè)運(yùn)動(dòng)的時(shí)間為t(s),0<t<5. 根據(jù)題意解答下列問題: (1)用含t的代數(shù)式表示AP; (2)設(shè)四邊形CPQB的面積為S(cm2),求S與t的函數(shù)關(guān)系式; (3)當(dāng)QP⊥BD時(shí),求t的值; (4)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使點(diǎn)E在∠ABD的平分線上?若存在,求出t的值;若不存在,請說明理由. 【分析】(1)如圖作DH⊥AB于H則四邊形DHBC是矩形,利用勾股定理求出AD的長即可解決問題; (2)作PN⊥AB于N.連接PB,根據(jù)S=S△PQB+S△BCP,計(jì)算即可; (3)當(dāng)PQ⊥BD時(shí),∠PQN+∠DBA=90,∠QPN+∠PQN=90,推出∠QPN=∠DBA,推出tan∠QPN==,由此構(gòu)建方程即可解解題問題; (4)存在.連接BE交DH于K,作KM⊥BD于M.當(dāng)BE平分∠ABD時(shí),△KBH≌△KBM,推出KH=KM,BH=BM=8,設(shè)KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,則△AEF≌△QPN,推出EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,推出BF=16﹣[(10﹣2t)﹣2t],由KH∥EF,可得=,由此構(gòu)建方程即可解決問題; 【解答】解:(1)如圖作DH⊥AB于H,則四邊形DHBC是矩形, ∴CD=BH=8,DH=BC=6, ∴AH=AB﹣BH=8,AD==10,BD==10, 由題意AP=AD﹣DP=10﹣2t. (2)作PN⊥AB于N.連接PB.在Rt△APN中,PA=10﹣2t, ∴PN=PA?sin∠DAH=(10﹣2t),AN=PA?cos∠DAH=(10﹣2t), ∴BN=16﹣AN=16﹣(10﹣2t), S=S△PQB+S△BCP=?(16﹣2t)?(10﹣2t)+6[16﹣(10﹣2t)]=t2﹣12t+78 (3)當(dāng)PQ⊥BD時(shí),∠PQN+∠DBA=90, ∵∠QPN+∠PQN=90, ∴∠QPN=∠DBA, ∴tan∠QPN==, ∴=, 解得t=, 經(jīng)檢驗(yàn):t=是分式方程的解, ∴當(dāng)t=s時(shí),PQ⊥BD. (4)存在. 理由:連接BE交DH于K,作KM⊥BD于M. 當(dāng)BE平分∠ABD時(shí),△KBH≌△KBM, ∴KH=KM,BH=BM=8,設(shè)KH=KM=x, 在Rt△DKM中,(6﹣x)2=22+x2, 解得x=, 作EF⊥AB于F,則△AEF≌△QPN, ∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t, ∴BF=16﹣[(10﹣2t)﹣2t], ∵KH∥EF, ∴=, ∴=, 解得:t=, 經(jīng)檢驗(yàn):t=是分式方程的解, ∴當(dāng)t=s時(shí),點(diǎn)E在∠ABD的平分線. 【點(diǎn)評】本題考查四邊形綜合題,解直角三角形、銳角三角函數(shù)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形或全等三角形解決問題,學(xué)會理由參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
15 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 山東省 青島市 2018 年中 數(shù)學(xué)試卷 答案 解析
鏈接地址:http://www.3dchina-expo.com/p-10380546.html