欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3

上傳人:彩*** 文檔編號:104324127 上傳時間:2022-06-10 格式:DOC 頁數(shù):7 大小:151KB
收藏 版權(quán)申訴 舉報 下載
2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3_第1頁
第1頁 / 共7頁
2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3_第2頁
第2頁 / 共7頁
2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3》由會員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學(xué) 第一章 計數(shù)原理 4 簡單計數(shù)問題學(xué)案 北師大版選修2-3(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 4 簡單計數(shù)問題 學(xué)習(xí)目標(biāo) 1.進(jìn)一步理解和掌握分類加法計數(shù)原理和分步乘法計數(shù)原理.2.進(jìn)一步深化排列與組合的概念.3.能綜合運(yùn)用排列、組合解決計數(shù)問題. 知識點一 兩個計數(shù)原理 1.分類加法計數(shù)原理(加法原理) 完成一件事,可以有n類辦法,在第一類辦法中有m1種方法,在第二類辦法中有m2種方法,……,在第n類辦法中有mn種方法,那么,完成這件事共有N=__________種方法. 2.分步乘法計數(shù)原理(乘法原理) 完成一件事需要經(jīng)過n個步驟,缺一不可,做第一步有m1種方法,做第二步有m2種方法,……,做第n步有mn種方法,那么,完成這件事共有N=____________

2、種方法. 3.分類加法計數(shù)原理與分步乘法計數(shù)原理,都涉及完成一件事的不同方法的種數(shù).它們的區(qū)別在于:分類加法計數(shù)原理與分類有關(guān),各種方法相互獨立,用其中的任一種方法都可以完成這件事;分步乘法計數(shù)原理與分步有關(guān),各個步驟相互依存,只有各個步驟都完成了,這件事才算完成. 知識點二 排列 1.排列 從n個________的元素中取出m(m≤n)個元素,按照一定的________排成一列,叫作從n個不同的元素中任意取出m個元素的一個排列. 2.排列數(shù) 排列數(shù)定義及表示 從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫作從n個不同元素中取出m個元素的排列數(shù),記作________

3、____ 排列數(shù)公式 乘積式 A=____________ 階乘式 A=________________________ 排列數(shù)的性質(zhì) A=________;A=________,0!=1 知識點三 組合 1.組合 一般地,從n個不同的元素中,任取m(m≤n)個元素為一組,叫作從n個不同的元素中取出m個元素的一個組合. 2.組合數(shù) (1)組合數(shù)定義:從n個不同元素中取出m(m≤n)個元素的____________,叫作從n個不同元素中取出m個元素的組合數(shù),用符號________表示. (2)組合數(shù)公式 組合數(shù)公式 乘積形式 C==______________

4、 階乘形式 C= 備注 n,m∈N+,且m≤n,規(guī)定C=________ 特別提醒:1.排列組合綜合題的一般解法 一般堅持先組后排的原則,即先選元素后排列,同時注意按元素性質(zhì)分類或按事件的發(fā)生過程分類. 2.解決有限制條件的排列、組合問題的一般策略 (1)特殊元素優(yōu)先安排的策略. (2)正難則反,等價轉(zhuǎn)化的策略. (3)相鄰問題捆綁處理的策略. (4)不相鄰問題插空處理的策略. (5)定序問題除法處理的策略. (6)“小集團(tuán)”排列問題中先整體后局部的策略. (7)平均分組問題,除法處理的策略. (8)構(gòu)造模型的策略. 類型一 兩個計數(shù)原理的應(yīng)用 命題角

5、度1 “類中有步”的計數(shù)問題 例1 電視臺在某節(jié)目中拿出兩個信箱,其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信,甲信箱中有30封,乙信箱中有20封,現(xiàn)由主持人抽獎確定幸運(yùn)觀眾,若先確定一名幸運(yùn)之星,再從兩信箱中各確定一名幸運(yùn)伙伴,有________種不同的結(jié)果. 反思與感悟 用流程圖描述計數(shù)問題,類中有步的情形如圖所示: 具體意義如下: 從A到B算作一件事的完成,完成這件事有兩類辦法,在第1類辦法中有3步,在第2類辦法中有2步,每步的方法數(shù)如圖所示. 所以,完成這件事的方法數(shù)為m1m2m3+m4m5, “類”與“步”可進(jìn)一步地理解為: “類”用“+”號連接,“步”用“×”號連接

6、,“類”獨立,“步”連續(xù),“類”標(biāo)志一件事的完成,“步”缺一不可. 跟蹤訓(xùn)練1 現(xiàn)有4種不同顏色,要對如圖所示的四個部分進(jìn)行著色,要求有公共邊界的兩部分不能用同一種顏色,則不同的著色方法共有(  ) A.24種 B.30種 C.36種 D.48種 命題角度2 “步中有類”的計數(shù)問題 例2 有4位同學(xué)在同一天的上、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺階”五個項目的測試,每位同學(xué)上、下午各測試一個項目,且不重復(fù).若上午不測“握力”項目,下午不測“臺階”項目,其余項目上、下午都各測一人,則不同的安排方式共有________種.(用數(shù)字作答) 反思與感

7、悟 用流程圖描述計數(shù)問題,步中有類的情形如圖所示: 從計數(shù)的角度看,由A到D算作完成一件事,可簡單地記為A→D. 完成A→D這件事,需要經(jīng)歷三步,即A→B,B→C,C→D.其中B→C這步又分為三類,這就是步中有類. 其中mi(i=1,2,3,4,5)表示相應(yīng)步的方法數(shù). 完成A→D這件事的方法數(shù)為m1(m2+m3+m4)m5. 以上給出了處理步中有類問題的一般方法. 跟蹤訓(xùn)練2 如圖所示,使電路接通,開關(guān)不同的開閉方式共有(  ) A.11 B.12 C.20 D.21 類型二 排列與組合的綜合應(yīng)用 命題角度1 不同元素的排列、組合問題 例3 有4張分別標(biāo)有數(shù)

8、字1,2,3,4的紅色卡片和4張分別標(biāo)有數(shù)字1,2,3,4的藍(lán)色卡片,從這8張卡片中取出4張卡片排成一行.如果取出的4張卡片所標(biāo)的數(shù)字之和等于10,則不同的排法共有多少種?       反思與感悟 (1)解排列、組合綜合問題的一般思路是“先選后排”,也就是先把符合題意的元素都選出來,再對元素或位置進(jìn)行排列. (2)解排列、組合綜合問題時的注意點 ①元素是否有序是區(qū)分排列與組合的基本方法,無序的問題是組合問題,有序的問題是排列問題. ②對于有多個限制條件的復(fù)雜問題,應(yīng)認(rèn)真分析每個限制條件,然后再考慮是分類還是分步,這是處理排列、組合綜合問題的一般方法. 跟蹤訓(xùn)練3 從

9、1,3,5,7,9中任取3個數(shù)字,從0,2,4,6,8中任取2個數(shù)字,一共可以組成多少個沒有重復(fù)數(shù)字的五位偶數(shù)?       命題角度2 含有相同元素的排列、組合問題 例4 今有2個紅球、3個黃球、4個白球,同色球不加區(qū)分,將這9個球排成一列,有________種不同的方法.     反思與感悟 針對對部分元素相同的n個不同元素進(jìn)行排列的問題,有兩種解決方法:(1)先把這些元素看作全不相同的元素進(jìn)行排列,再設(shè)法消去相同元素的順序.(2)從位置進(jìn)行分析,因為位置全不相同,可以分別給相同的每一類元素找位置. 跟蹤訓(xùn)練4 為減輕學(xué)生經(jīng)濟(jì)負(fù)擔(dān)且又能滿足學(xué)生求知要求,某班級

10、利用班費買了4本相同的數(shù)學(xué)資料書、3本相同的外語資料書、2本相同的物理資料書作為班級圖書供同學(xué)們學(xué)習(xí)使用.現(xiàn)有8人去借閱圖書,每人只能借閱一本,則有多少種借閱方法?         1.李芳有4件不同顏色的襯衣,3件不同花樣的裙子,另有兩套不同樣式的連衣裙.“五一”節(jié)需選擇一套服裝參加歌舞演出,則李芳的不同的選擇方式有(  ) A.24種 B.14種 C.10種 D.9種 2.設(shè)4名學(xué)生報名參加同一時間安排的3項課外活動的可能結(jié)果有a種,這4名學(xué)生在運(yùn)動會上共同爭奪100米、跳遠(yuǎn)、鉛球3項比賽的冠軍的可能結(jié)果有b種,則(a,b)為(  ) A.(3

11、4,34) B.(43,34) C.(34,43) D.(A,A) 3.三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個位上的數(shù)字都小,則稱這個數(shù)為凹數(shù),如524,746等都是凹數(shù),那么,各個數(shù)位上無重復(fù)數(shù)字的三位凹數(shù)有(  ) A.72個 B.120個 C.240個 D.360個 4.某電視臺連續(xù)播放5個廣告,其中有3個不同的商業(yè)廣告和2個不同的公益宣傳廣告,要求最后播放的必須是公益宣傳廣告,且2個公益宣傳廣告不能連續(xù)播放,則不同的播放方式有________種. 5.已知xi∈{-1,0,1},i=1,2,3,4,5,6,則滿足x1+x2+x3+x4+x5+x6=2的

12、數(shù)組(x1,x2,x3,x4,x5,x6)的個數(shù)為________. 1.解排列、組合綜合題一般是先選元素、后排元素,或充分利用元素的性質(zhì)進(jìn)行分類、分步,再利用兩個基本計數(shù)原理作最后處理. 2.對于較難直接解決的問題則可用間接法,但應(yīng)做到不重不漏. 3.對于分配問題,解題的關(guān)鍵是要搞清楚事件是否與順序有關(guān),對于平均分組問題更要注意順序,避免計數(shù)的重復(fù)或遺漏. 答案精析 知識梳理 知識點一 1.m1+m2+…+mn 2.m1×m2×…×mn 知識點二 1.不同 順序 2.A n(n-1)(n-2)…(n-m+1) (n,m∈N+,m≤n) n! 1 知識點三 2

13、.(1)所有組合的個數(shù) C (2) 1 題型探究 例1 28 800 解析 在甲箱或乙箱中抽取幸運(yùn)之星,決定了后邊選幸運(yùn)伙伴是不同的,故要分兩類分別計算:(1)幸運(yùn)之星在甲箱中抽,先確定幸運(yùn)之星,再在兩箱中各確定一名幸運(yùn)伙伴,有30×29×20=17 400(種)結(jié)果;(2)幸運(yùn)之星在乙箱中抽,同理有20×19×30=11 400(種)結(jié)果.因此共有17 400+11 400=28 800(種)不同結(jié)果. 跟蹤訓(xùn)練1 D 例2 264 跟蹤訓(xùn)練2 D 例3 解 分三類: 第一類,當(dāng)取出的4張卡片分別標(biāo)有數(shù)字1,2,3,4時,不同的排法有C·C·C·C·A種. 第二類,當(dāng)取出

14、的4張卡片分別標(biāo)有數(shù)字1,1,4,4時,不同的排法有C·C·A種. 第三類,當(dāng)取出的4張卡片分別標(biāo)有數(shù)字2,2,3,3時,不同的排法有C·C·A種. 故滿足題意的所有不同的排法種數(shù)為C·C·C·C·A+2C·C·A=432. 跟蹤訓(xùn)練3 解 (1)五位數(shù)中不含數(shù)字0. 第1步,選出5個數(shù)字,共有CC種選法. 第2步,排成偶數(shù)——先排末位數(shù),有A種排法,再排其他四位數(shù)字,有A種排法. 所以N1=C·C·A·A. (2)五位數(shù)中含有數(shù)字0. 第1步,選出5個數(shù)字,共有C·C種選法. 第2步,排順序又可分為兩小類: ①末位排0,有A·A種排列方法; ②末位不排0.這時末位數(shù)有C

15、種選法,而因為0不能排在首位,所以首位有A種排法,其余3個數(shù)字則有A種排法. 所以N2=C·C(A·A+A·A). 所以符合條件的偶數(shù)個數(shù)為 N=N1+N2=CCAA+CC(AA+AA) =4 560. 例4 1 260 跟蹤訓(xùn)練4 解 第一類:剩下的一本書是數(shù)學(xué)資料書,此時相當(dāng)于把8個人分成個數(shù)分別為3,3,2的三堆,這三堆分別借閱數(shù)學(xué)、外語、物理資料書,其借法共有CCC=560(種). 第二類:剩下的一本書是外語資料書,此時相當(dāng)于把8個人分成個數(shù)分別為4,2,2的三堆,這三堆分別借閱數(shù)學(xué)、外語、物理資料書,其借法共有CCC=420(種). 第三類:剩下的一本書是物理資料書,此時相當(dāng)于把8個人分成個數(shù)分別為4,3,1的三堆,這三堆分別借閱數(shù)學(xué)、外語、物理資料書,其借法共有CCC=280(種). 根據(jù)分類加法計數(shù)原理,可得借閱方法共有560+420+280=1 260(種). 當(dāng)堂訓(xùn)練 1.B 2.C 3.C 4.36 5.90 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!