《2019年高考數(shù)學一輪復習 第3章 三角函數(shù)、解三角形 第2節(jié) 同角三角函數(shù)的基本關系與誘導公式學案 文 北師大版》由會員分享,可在線閱讀,更多相關《2019年高考數(shù)學一輪復習 第3章 三角函數(shù)、解三角形 第2節(jié) 同角三角函數(shù)的基本關系與誘導公式學案 文 北師大版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第二節(jié) 同角三角函數(shù)的基本關系與誘導公式
[考綱傳真] 1.理解同角三角函數(shù)的基本關系式:sin2α+cos2α=1,=tan α.2.能利用單位圓中的三角函數(shù)線推導出±α,π±α的正弦、余弦、正切的誘導公式.
(對應學生用書第41頁)
[基礎知識填充]
1.同角三角函數(shù)的基本關系式
(1)平方關系:sin2α+cos2α=1;
(2)商數(shù)關系:tan α=.
2.誘導公式
組序
一
二
三
四
五
六
角
2kπ+
α(k∈Z)
π+α
-α
π-α
-α
+α
正弦
sin α
-sin α
-sin α
sin α
c
2、os α
cos_α
余弦
cos α
-cos α
cos α
-cos_α
sin α
-sin α
正切
tan α
tan α
-tan α
-tan_α
口訣
函數(shù)名不變,符號看象限
函數(shù)名改變符號看象限
[知識拓展]
同角三角函數(shù)的基本關系式的幾種變形
(1)(sin α±cos α)2=1±2sin αcos α.
(2)sin2α=1-cos2α=(1+cos α)(1-cos α).
(3)cos2α=1-sin2α=(1+sin α)(1-sin α).
(4)sin α=tan αcos α.
[基本能力自
3、測]
1.(思考辨析)判斷下列結論的正誤.(正確的打“√”,錯誤的打“×”)
(1)若α,β為銳角,則sin2α+cos2β=1.( )
(2)若α∈R,則tan α=恒成立.( )
(3)sin(π+α)=-sin α成立的條件是α為銳角.( )
(4)若sin(kπ-α)=(k∈Z),則sin α=.( )
[答案] (1)× (2)× (3)× (4)×
2.(教材改編)已知α是第二象限角,sin α=,則cos α等于( )
A.- B.-
C. D.
B [∵sin α=,α是第二象限角,
∴cos α=-=-.]
4、
3.(2017·陜西質檢(二))若tan α=,則sin4α-cos4α的值為( )
A.- B.-
C. D.
B [sin4α-cos4α=(sin2α-cos2α)(sin2α+cos2α)===-,故選B.]
4.(2016·四川高考)sin 750°=________.
[sin 750°=sin(750°-360°×2)=sin 30°=.]
5.已知sin=,α∈,則sin(π+α)=________.
- [因為sin=cos α=,α∈,所以sin α==,所以sin(π+α)=-sin α=-.]
(對應學生用書第41頁)
5、同角三角函數(shù)基本關系式的應用
(1)(2016·全國卷Ⅲ)若tan α=,則cos2α+2sin 2α=( )
A. B.
C.1 D.
(2)(2018·寧德模擬)已知α為第二象限角,sin α+cos α=,則cos 2α=________. 【導學號:00090085】
(1)A (2) - [(1)∵tan α=,則cos2α+2sin 2α====,故選A.
(2)由(sin α+cos α)2=1+2sin αcos α=得2sin αcos α=-,
所以(cos α-sin α)2=1-2sin αcos α=,
又
6、α是第二象限角,所以cos α-sin α<0,
所以cos α-sin α=-,
因此cos 2α=cos2α-sin2α=(cos α+sin α)(cos α-sin α)=×=-.]
[規(guī)律方法] 1.利用sin2α+cos2α=1可以實現(xiàn)角α的正弦、余弦的互化,利用=tan α可以實現(xiàn)角α的弦切互化.
2.應用公式時要注意方程思想的應用:對于sin α+cos α,sin αcos α,sin α-cos α這三個式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.
3.注意公式逆用及變形應用:1=sin2α+cos2α,sin2α=
7、1-cos2α,cos2α=1-sin2α.
[變式訓練1] (1)已知=5,則sin2α-sin αcos α的值為( )
A.- B.-
C. D.
(2)若α是三角形的內角,且tan α=-,則sin α+cos α的值為________.
(1)D (2)- [(1)依題意得:=5,
∴tan α=2.
∴sin2α-sin αcos α
=
===.
(2)由tan α=-,得sin α=-cos α,
將其代入sin2α+cos2α=1,
得cos2α=1,∴cos2α=,易知cos α<0,
∴cos α=-,sin α=,
8、 故sin α+cos α=-.]
誘導公式的應用
(1)已知A=+(k∈Z),則A的值構成的集合是( )
A.{1,-1,2,-2} B.{-1,1}
C.{2,-2} D.{1,-1,0,2,-2}
(2)(2018·郴州模擬)已知sin=,則cos=________.
【導學號:00090086】
(1)C (2) [(1)當k為偶數(shù)時,A=+=2;
k為奇數(shù)時,A=-=-2.
(2)因為+=.
所以cos=cos=sin=.]
[規(guī)律方法] 1.利用誘導公式應注意已知角或函數(shù)名稱與所求角或函數(shù)名稱之間存在的關系,尤其是角之間的互余、互
9、補關系,選擇恰當?shù)墓?,向所求角和三角函?shù)進行化歸.
2.誘導公式的應用原則:負化正、大化小、小化銳、銳求值.
[變式訓練2] 已知cos=,則cos-sin2的值為________.
- [∵cos=cos
=-cos=-,
sin2=sin2=sin2
=1-cos2=1-2=,
∴cos-sin2=--=-.]
同角關系式與誘導公式的綜合應用
(1)(2016·全國卷Ⅰ)已知θ是第四象限角,且sinθ+=,則tan=________.
(2)(2017·鄭州質檢)已知cos=2sin,則的值為________.
(1)- (2) [(1)由題意
10、知sin=,θ是第四象限角,所以cos>0,所以cos==.
又-=,所以sin=cos=,cos=-sin=-,從而tan==-.
(2)∵cos=2sin,
∴-sin α=-2cos α,則sin α=2cos α,
代入sin2α+cos2α=1,得cos2α=.
=
==cos2α-=.]
[規(guī)律方法] 利用同角三角函數(shù)基本關系式和誘導公式化簡三角函數(shù)的基本思路和化簡要求:(1)基本思路:①分析結構特點,選擇恰當公式;②利用公式化成單角三角函數(shù);③整理得最簡形式.
(2)化簡要求:①化簡過程是恒等變形;②結果要求項數(shù)盡可能少,次數(shù)盡可能低,結構盡可能簡單,能求值的要求出值.
[變式訓練3] (1)(2016·安徽皖南八校聯(lián)考)已知sin α=,α是第二象限角,則tan(π-α)=________.
(2)(2018·九江模擬)已知tan θ=3,則cos=________.
【導學號:00090087】
(1) (2) [(1)∵sin α=,α是第二象限角,∴cos α=-,
∴tan α=-,故tan(π-α)=-tan α=.
(2)因為tan θ=3,所以cos=sin 2θ====.]
6