欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版

上傳人:彩*** 文檔編號(hào):104782687 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):7 大?。?.68MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第6章 不等式、推理與證明 第5節(jié) 綜合法與分析法、反證法教學(xué)案 文(含解析)北師大版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第五節(jié) 綜合法與分析法、反證法 [考綱傳真] 1.了解直接證明的兩種基本方法:綜合法和分析法;了解綜合法和分析法的思考過(guò)程和特點(diǎn).2.了解反證法的思考過(guò)程和特點(diǎn). 1.綜合法 從命題的條件出發(fā),利用定義、公理、定理及運(yùn)算法則,通過(guò)演繹推理,一步一步地接近要證明的結(jié)論,直到完成命題的證明,這樣的思維方法稱為綜合法. 2.分析法 從求證的結(jié)論出發(fā),一步一步地探索保證前一個(gè)結(jié)論成立的充分條件,直到歸結(jié)為這個(gè)命題的條件,或者歸結(jié)為定義、公理、定理等,這樣的思維方法稱為分析法. 3.反證法 (1)定義:在證明數(shù)學(xué)命題時(shí),先假定命題結(jié)論的反面成立,在這個(gè)前提下,若推出的結(jié)果與定義、公

2、理、定理相矛盾,或與命題中的已知條件相矛盾,或與假定相矛盾,從而說(shuō)明命題結(jié)論的反面不可能成立,由此斷定命題的結(jié)論成立.這種證明方法叫作反證法. (2)反證法的證明步驟是: ①作出否定結(jié)論的假設(shè); ②進(jìn)行推理,導(dǎo)出矛盾; ③否定假設(shè),肯定結(jié)論. [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)綜合法的思維過(guò)程是由因?qū)Ч?,逐步尋找已知的必要條件. (  ) (2)分析法是從要證明的結(jié)論出發(fā),逐步尋找使結(jié)論成立的充要條件. (  ) (3)用反證法證明時(shí),推出的矛盾不能與假設(shè)矛盾. (  ) (4)在解決問(wèn)題時(shí),常常用分析法尋找解題的思

3、路與方法,再用綜合法展現(xiàn)解決問(wèn)題的過(guò)程. (  ) [答案] (1)√ (2)× (3)× (4)√ 2.要證a2+b2-1-a2b2≤0 ,只要證明(  ) A.2ab-1-a2b2≤0 B.a(chǎn)2+b2-1-≤0 C.-1-a2b2≤0 D.(a2-1)(b2-1)≥0 D [a2+b2-1-a2b2≤0?(a2-1)(b2-1)≥0.] 3.用反證法證明命題:“已知a,b為實(shí)數(shù),則方程x2+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是(  ) A.方程x2+ax+b=0沒(méi)有實(shí)根 B.方程x2+ax+b=0至多有一個(gè)實(shí)根 C.方程x2+ax+b=0至多有兩個(gè)實(shí)根 D.

4、方程x2+ax+b=0恰好有兩個(gè)實(shí)根 A [“方程x2+ax+b=0至少有一個(gè)實(shí)根”的反面是“方程x2+ax+b=0沒(méi)有實(shí)根”,故選A.] 4.已知a,b,x均為正數(shù),且a>b,則與的大小關(guān)系是________. > [∵-=>0,∴>.] 5.(教材改編)在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且A,B,C成等差數(shù)列,a,b,c成等比數(shù)列,則△ABC的形狀為_(kāi)_________三角形. 等邊 [由題意2B=A+C, 又A+B+C=π,∴B=,又b2=ac, 由余弦定理得b2=a2+c2-2accos B=a2+c2-ac, ∴a2+c2-2ac=0,即(a-c

5、)2=0,∴a=c, ∴A=C,∴A=B=C=, ∴△ABC為等邊三角形.] 綜合法 1.已知m>1,a=-,b=-,則以下結(jié)論正確的是(  ) A.a(chǎn)>b     B.a(chǎn)<b C.a(chǎn)=b D.a(chǎn),b大小不定 B [∵a=-=, b=-=. 而+>+>0(m>1), ∴<, 即a<b.] 2.已知函數(shù)f(x)=-(a>0,且a≠1). (1)證明:函數(shù)y=f(x)的圖像關(guān)于點(diǎn)對(duì)稱; (2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值. [證明] (1)函數(shù)f(x)的定義域?yàn)槿w實(shí)數(shù),任取一點(diǎn)(x,y),它關(guān)于點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)

6、為(1-x,-1-y). 由已知y=-, 則-1-y=-1+=-, f(1-x)=-=- =-=-, ∴-1-y=f(1-x), 即函數(shù)y=f(x)的圖像關(guān)于點(diǎn)對(duì)稱. (2)由(1)知-1-f(x)=f(1-x), 即f(x)+f(1-x)=-1. ∴f(-2)+f(3)=-1,f(-1)+f(2)=-1, f(0)+f(1)=-1. 則f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3. [規(guī)律方法] 綜合法證題的思路 分析法 1.若a,b∈(1,+∞),證明<. [證明] 要證<, 只需證()2<()2, 只需證a+b-1

7、-ab<0, 即證(a-1)(1-b)<0. 因?yàn)閍>1,b>1,所以a-1>0,1-b<0, 即(a-1)(1-b)<0成立, 所以原不等式成立. 2.已知△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,A,B,C的對(duì)邊分別為a,b,c. 求證:+=. [證明] 要證+=, 即證+=3,也就是+=1, 只需證c(b+c)+a(a+b)=(a+b)(b+c), 需證c2+a2=ac+b2, 又△ABC三內(nèi)角A,B,C成等差數(shù)列,故B=60°, 由余弦定理,得,b2=c2+a2-2accos 60°, 即b2=c2+a2-ac, 故c2+a2=ac+b2成立. 于是原等式成

8、立. [規(guī)律方法] 分析法的證題思路 (1)分析法的證題思路:先從結(jié)論入手,由此逐步推出保證此結(jié)論成立的充分條件,而當(dāng)這些判斷恰恰都是已證的命題(定義、公理、定理、法則、公式等)或要證命題的已知條件時(shí)命題得證. (2)證明較復(fù)雜的問(wèn)題時(shí),可以采用兩頭湊的辦法,即通過(guò)分析法找出某個(gè)與結(jié)論等價(jià)(或充分)的中間結(jié)論,然后通過(guò)綜合法證明這個(gè)中間結(jié)論,從而使原命題得證. 反證法 ?考法1 證明否定性命題 【例1】 設(shè){an}是公比為q的等比數(shù)列. (1)推導(dǎo){an}的前n項(xiàng)和公式; (2)設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列. [解] (1)設(shè){an}的前n項(xiàng)和為Sn

9、. 則Sn=a1+a1q+a1q2+…+a1qn-1, qSn=a1q+a1q2+…+a1qn-1+a1qn, 兩式相減得(1-q)Sn=a1-a1qn=a1(1-qn), 當(dāng)q≠1時(shí),Sn=, 當(dāng)q=1時(shí),Sn=a1+a1+…+a1=na1, 所以Sn= (2)證明:假設(shè)數(shù)列{an+1}是等比數(shù)列, 則(a1+1)(a3+1)=(a2+1)2, 即a1a3+a1+a3+1=a+2a2+1, 因?yàn)閧an}是等比數(shù)列,公比為q, 所以a1a3=a,a2=a1q,a3=a1q2, 所以a1(1+q2)=2a1q. 即q2-2q+1=0,(q-1)2=0,q=1, 這與已

10、知q≠1矛盾, 所以假設(shè)不成立,故數(shù)列{an+1}不是等比數(shù)列. ?考法2 證明“至多”“至少”命題 【例2】 已知a,b,c是互不相等的非零實(shí)數(shù),用反證法證明三個(gè)方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一個(gè)方程有兩個(gè)相異實(shí)根. [證明] 假設(shè)三個(gè)方程都沒(méi)有兩個(gè)相異實(shí)根. 則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0, Δ3=4a2-4bc≤0, 上述三個(gè)式子相加得: a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0, 即(a-b)2+(b-c)2+(c-a)2≤0. 所以a=b=c這與a,b,c是互不相等的實(shí)

11、數(shù)相矛盾. 因此假設(shè)不成立,故三個(gè)方程ax2+2bx+c=0, bx2+2cx+a=0,cx2+2ax+b=0中至少有一個(gè)方程有兩個(gè)相異實(shí)根. [規(guī)律方法] 用反證法證明數(shù)學(xué)命題需把握的三點(diǎn) (1)必須先否定結(jié)論,即肯定結(jié)論的反面; (2)必須從否定結(jié)論進(jìn)行推理,即應(yīng)把結(jié)論的反面作為條件,且必須依據(jù)這一條件進(jìn)行推證; (3)推導(dǎo)出的矛盾可能多種多樣,有的與已知矛盾,有的與假設(shè)矛盾,有的與已知事實(shí)矛盾等,但是推導(dǎo)出的矛盾必須是明顯的. 設(shè)a>0,b>0,且a+b=+.證明: (1)a+b≥2; (2)a2+a<2與b2+b<2不可能同時(shí)成立. [證明] 由a+b=+=,a>0,b>0,得ab=1. (1)由基本不等式及ab=1,有a+b≥2=2,當(dāng)且僅當(dāng)a=b=1時(shí),等號(hào)成立,即a+b≥2. (2)假設(shè)a2+a<2與b2+b<2同時(shí)成立, 則由a2+a<2及a>0,得0

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!