2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.4 函數(shù)的應(yīng)用(一)教學(xué)案 新人教A版必修第一冊(cè)
《2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.4 函數(shù)的應(yīng)用(一)教學(xué)案 新人教A版必修第一冊(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.4 函數(shù)的應(yīng)用(一)教學(xué)案 新人教A版必修第一冊(cè)(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、3.4 函數(shù)的應(yīng)用(一) (教師獨(dú)具內(nèi)容) 課程標(biāo)準(zhǔn):1.理解函數(shù)模型是描述客觀世界中變量關(guān)系和規(guī)律的重要數(shù)學(xué)語(yǔ)言和工具.2.在實(shí)際情境中,能夠運(yùn)用已經(jīng)學(xué)過的一次函數(shù)、二次函數(shù)、分段函數(shù)及冪函數(shù)建立模型,解決簡(jiǎn)單的實(shí)際問題,體會(huì)這些函數(shù)在解決實(shí)際問題中的作用. 教學(xué)重點(diǎn):用函數(shù)模型來解決實(shí)際問題. 教學(xué)難點(diǎn):建立函數(shù)模型. 【知識(shí)導(dǎo)學(xué)】 知識(shí)點(diǎn) 用函數(shù)模型解決實(shí)際問題的一般步驟 (1)審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,用函數(shù)刻畫實(shí)際問題,初步選擇模型. (2)建模:將文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,利用數(shù)學(xué)知識(shí),建立相應(yīng)的數(shù)學(xué)模型. (3)求模:求解數(shù)學(xué)模型,得到數(shù)學(xué)
2、結(jié)論. (4)還原:利用數(shù)學(xué)知識(shí)和方法得出的結(jié)論還原到實(shí)際問題中. 可將這些步驟用框圖表示如下: 【新知拓展】 常見的函數(shù)模型 (1)一次函數(shù)模型:即直線模型,其特點(diǎn)是隨著自變量的增大,函數(shù)值勻速增大或減小.現(xiàn)實(shí)生活中很多事例可以用該模型來表示,例如:勻速直線運(yùn)動(dòng)的時(shí)間和位移的關(guān)系,彈簧的伸長(zhǎng)量與拉力的關(guān)系等. (2)二次函數(shù)模型:二次函數(shù)為生活中最常見的一種數(shù)學(xué)模型,因二次函數(shù)可求其最大值(或最小值),故最優(yōu)、最省等問題常常是二次函數(shù)的模型. (3)分段函數(shù)模型:由于分段函數(shù)在不同的區(qū)間中具有不同的解析式,因此分段函數(shù)在研究條件變化的實(shí)際問題,或者在某一特定條件下的實(shí)際問題
3、中具有廣泛的應(yīng)用. 1.判一判(正確的打“√”,錯(cuò)誤的打“×”) (1)在用函數(shù)模型解決實(shí)際問題時(shí),得到的數(shù)學(xué)問題的解就是實(shí)際問題的解.( ) (2)現(xiàn)實(shí)生活中有很多問題都可以用分段函數(shù)來描述,如出租車計(jì)費(fèi),個(gè)人所得稅等.( ) (3)一根蠟燭長(zhǎng)20 cm,點(diǎn)燃后每小時(shí)燃燒5 cm,燃燒時(shí)剩下的高度h(cm)與燃燒時(shí)間t(h)的函數(shù)關(guān)系可以用一次函數(shù)模型來刻畫.( ) 答案 (1)× (2)√ (3)√ 2.做一做(請(qǐng)把正確的答案寫在橫線上) (1)某人從A地出發(fā),開汽車以80千米/小時(shí)的速度經(jīng)2小時(shí)到達(dá)B地,在B地停留2小時(shí),則汽車離開A地的距離y(單位:千米)是時(shí)間
4、t(單位:小時(shí))的函數(shù),該函數(shù)的解析式是________. (2)有200 m長(zhǎng)的籬笆材料,如果利用已有的一面墻(假設(shè)長(zhǎng)度夠用)作為一邊,圍成一塊矩形菜地,那么矩形的長(zhǎng)為________ m,寬為________ m時(shí),這塊菜地的面積最大. 答案 (1)y= (2)100 50 題型一 一次函數(shù)模型解決實(shí)際問題 例1 某服裝廠每天生產(chǎn)童裝200套或西服50套,已知每生產(chǎn)一套童裝需成本40元,可獲得利潤(rùn)22元,每生產(chǎn)一套西服需成本150元,可獲得利潤(rùn)80元.由于資金有限,該廠每月成本支出不超過23萬(wàn)元,為使贏利最大,若按每月30天計(jì)算,應(yīng)安排生產(chǎn)童裝和西服各多少天(天數(shù)為整數(shù))
5、?并求出最大利潤(rùn). [解] 設(shè)生產(chǎn)童裝的天數(shù)為x,則生產(chǎn)西服的天數(shù)為(30-x),每月生產(chǎn)童裝和西服的套數(shù)分別為200x和50(30-x),每月生產(chǎn)童裝和西服的成本分別為40×200x元和150×50×(30-x)元,每月生產(chǎn)童裝和西服的利潤(rùn)分別為22×200x元和80×50×(30-x)元,則總利潤(rùn)為y=22×200x+80×50×(30-x),化簡(jiǎn)得y=400x+120000. 注意到每月成本不超過23萬(wàn)元,則40×200x+150×50×(30-x)≤230000,從而求出x的取值范圍是0≤x≤10,且x為整數(shù).顯然當(dāng)x=10時(shí),贏利最大,最大利潤(rùn)是124000元. 金版點(diǎn)睛
6、 用一次函數(shù)模型解決實(shí)際問題的解題方法 (1)建立一次函數(shù)模型時(shí)應(yīng)先求出自變量的取值范圍; (2)根據(jù)題目中的數(shù)量關(guān)系建立一次函數(shù)模型; (3)利用一次函數(shù)的圖象和性質(zhì)進(jìn)行求解、檢驗(yàn). 某列火車從北京西站開往石家莊,全程277 km.火車出發(fā)10 min開出13 km后,以120 km/h勻速行駛.試寫出火車行駛的總路程s與勻速行駛的時(shí)間t之間的關(guān)系,并求離開北京2 h時(shí)火車行駛的路程. 解 因?yàn)榛疖噭蛩龠\(yùn)動(dòng)的時(shí)間為(277-13)÷120=(h),所以0≤t≤.因?yàn)榛疖噭蛩傩旭倀 h所行駛路程為120t,所以,火車行駛總路程s與勻速行駛時(shí)間t之間的關(guān)系是s=13+12
7、0t.離開北京2 h時(shí)火車行駛的路程s=13+120×=233(km). 題型二 二次函數(shù)模型解決實(shí)際問題 例2 某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近似地表示為y=-48x+8000,已知此生產(chǎn)線年產(chǎn)量最大為210噸.若每噸產(chǎn)品平均出廠價(jià)為40萬(wàn)元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少? [解] 設(shè)可獲得總利潤(rùn)為R(x)萬(wàn)元, 則R(x)=40x-y =40x-+48x-8000 =-+88x-8000 =-(x-220)2+1680(0≤x≤210). ∵R(x)在[0,210]上單調(diào)
8、遞增, ∴x=210時(shí), R(x)max=-(210-220)2+1680=1660(萬(wàn)元). ∴年產(chǎn)量為210噸時(shí),可獲得最大利潤(rùn)1660萬(wàn)元. 金版點(diǎn)睛 用二次函數(shù)模型解題的策略 (1)根據(jù)實(shí)際問題建立函數(shù)解析式(即二次函數(shù)關(guān)系式). (2)利用配方法、判別式法、換元法、函數(shù)的單調(diào)性等方法求函數(shù)的最值,從而解決實(shí)際問題中的最值問題. (3)解答二次函數(shù)最值問題最好結(jié)合二次函數(shù)的圖象. 有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所獲得的利潤(rùn)依次為Q1萬(wàn)元和Q2萬(wàn)元,它們與投入的資金x萬(wàn)元的關(guān)系是Q1=x,Q2=.現(xiàn)有3萬(wàn)元資金投入使用,則對(duì)甲、乙兩種商品如何
9、投資才能獲得最大利潤(rùn)? 解 設(shè)對(duì)甲種商品投資x萬(wàn)元,則對(duì)乙種商品投資(3-x)萬(wàn)元,總利潤(rùn)為y萬(wàn)元. 所以Q1=x,Q2=. 所以y=x+(0≤x≤3), 令t=(0≤t≤),則x=3-t2. 所以y=(3-t2)+t=-2+. 當(dāng)t=時(shí),ymax==1.05(萬(wàn)元), 即x==0.75(萬(wàn)元),所以3-x=2.25(萬(wàn)元). 由此可知,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別為0.75萬(wàn)元和2.25萬(wàn)元,共獲得利潤(rùn)1.05萬(wàn)元. 題型三 分段函數(shù)模型解決實(shí)際問題 例3 某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂
10、購(gòu)量超過100個(gè)時(shí),每多訂購(gòu)1個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元. (1)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元? (2)設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式; (3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元? (工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本) [解] (1)設(shè)每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元時(shí),一次訂購(gòu)量為x0個(gè),則x0=100+=550(個(gè)).因此,當(dāng)一次訂購(gòu)量為550個(gè)時(shí),每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元. (2)當(dāng)
11、0
12、起,要注意各段變量的范圍,特別是端點(diǎn)值. 有一新款服裝在4月份(共30天)投放某專賣店銷售,日銷售量y(單位:件)關(guān)于時(shí)間n(1≤n≤30,n∈N*)(單位:天)的函數(shù)圖象如圖所示,其中函數(shù)y=f(n)的圖象中的點(diǎn)位于斜率為5和-3的兩條直線上,兩直線的交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大. (1)求f(n)的表達(dá)式,及前m天的銷售總量; (2)按規(guī)律,當(dāng)該服裝的銷售總量超過400件時(shí),社會(huì)上流行該服裝,而日銷售量連續(xù)下降并低于30件時(shí),該服裝的流行會(huì)消失.試問該服裝在社會(huì)上流行的天數(shù)是否會(huì)超過10天?并說明理由. 解 (1)由圖象知,當(dāng)1≤n≤m且n∈N*時(shí),設(shè)f
13、(n)=5n+b,將點(diǎn)(1,2)代入,得5+b=2,
解得b=-3,則f(n)=5n-3.
由f(m)=57,即5m-3=57,得m=12.
當(dāng)12 14、,即f(n)=-3n+93<30,解得n>21.
∴從第22天開始日銷售量低于30件,即流行時(shí)間為14號(hào)至21號(hào).
∴該服裝在社會(huì)上流行的天數(shù)不超過10天.
題型四 綜合運(yùn)用所學(xué)知識(shí)解決實(shí)際問題
例4 某商品每件成本價(jià)為80元,售價(jià)為100元,每天售出100件.若售價(jià)降低x成(1成=10%),售出商品數(shù)量就增加x成.要求售價(jià)不能低于成本價(jià).
(1)設(shè)該商店一天的營(yíng)業(yè)額為y,試求y與x之間的函數(shù)關(guān)系式y(tǒng)=f(x),并寫出定義域;
(2)若要求該商品一天營(yíng)業(yè)額至少為10260元,求x的取值范圍.
[解] (1)由題意得y=100·100.
因?yàn)槭蹆r(jià)不能低于成本價(jià),所以100-80 15、≥0,得x≤2.所以y=f(x)=20(10-x)(50+8x),定義域?yàn)閇0,2].
(2)由題意得20(10-x)(50+8x)≥10260,化簡(jiǎn)得8x2-30x+13≤0.解得≤x≤.所以x的取值范圍是.
金版點(diǎn)睛
對(duì)于此類實(shí)際應(yīng)用問題,應(yīng)先根據(jù)題意建立函數(shù)關(guān)系式,再解決數(shù)學(xué)問題,最后結(jié)合問題的實(shí)際意義作出回答.建立函數(shù)關(guān)系式是解題關(guān)鍵.
甲廠以x千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得的利潤(rùn)是100元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤(rùn)最大,問 16、:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤(rùn).
解 (1)根據(jù)題意,得
200≥3000,
整理得5x-14-≥0,即5x2-14x-3≥0,
又1≤x≤10,可解得3≤x≤10.
即要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于3000元,x的取值范圍是[3,10].
(2)設(shè)利潤(rùn)為y元,則
y=·100=9×104
=9×104,
故當(dāng)x=6時(shí),ymax=457500元.
即甲廠以6千克/小時(shí)的生產(chǎn)速度生產(chǎn)900千克該產(chǎn)品時(shí)獲得的利潤(rùn)最大,最大利潤(rùn)為457500元.
1.設(shè)甲、乙兩地的距離為a(a>0)米,小王騎自行車勻速?gòu)募椎氐揭业赜昧?0分鐘,在乙地休息10分鐘后,他又 17、勻速?gòu)囊业胤祷氐郊椎赜昧?0分鐘,則小王從出發(fā)到返回原地所走過的路程y(米)和其所用的時(shí)間x(分)的函數(shù)圖象為(如下圖所示)( )
答案 D
解析 注意到y(tǒng)表示“小王從出發(fā)到返回原地所走過的路程”,而不是位移.故選D.
2.某學(xué)校要召開學(xué)生代表大會(huì),規(guī)定各班每10人推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時(shí)再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為( )
A.y= B.y=
C.y= D.y=
答案 B
解析 根據(jù)規(guī)定可知,當(dāng)各班人數(shù)除以10的余數(shù)分別為7,8,9時(shí)可以 18、增選一名代表,所以最小應(yīng)該加3,因此利用取整函數(shù)可表示為y=.
3.生產(chǎn)一定數(shù)量的商品的全部費(fèi)用稱為生產(chǎn)成本,某企業(yè)一個(gè)月生產(chǎn)某種商品x萬(wàn)件時(shí)的生產(chǎn)成本為C(x)=x2+2x+20(萬(wàn)元).1萬(wàn)件售價(jià)是20萬(wàn)元,若該企業(yè)生產(chǎn)的這種商品能夠全部售出,那么為獲取最大利潤(rùn),該企業(yè)一個(gè)月應(yīng)生產(chǎn)該商品的數(shù)量為( )
A.18萬(wàn)件 B.20萬(wàn)件 C.16萬(wàn)件 D.8萬(wàn)件
答案 A
解析 利潤(rùn)L(x)=20x-C(x)=-(x-18)2+142,當(dāng)x=18時(shí),L(x)有最大值.故選A.
4.某同學(xué)將父母給的零用錢按每月相等的數(shù)額存放在儲(chǔ)蓄盒內(nèi),準(zhǔn)備捐給希望工程,盒內(nèi)原有60元,2個(gè)月后盒內(nèi) 19、有80元.則盒內(nèi)錢數(shù)y(元)與存錢月數(shù)x之間的函數(shù)關(guān)系式為________.
答案 y=10x+60(x≥0)
解析 設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b.因?yàn)楫?dāng)x=0時(shí),y=60;當(dāng)x=2時(shí),y=80,所以解得所以y=10x+60(x≥0).
5.心理學(xué)家發(fā)現(xiàn),學(xué)生對(duì)概念的接受能力y與提出概念所用的時(shí)間x(單位:分)之間滿足函數(shù)關(guān)系式y(tǒng)=-0.1x2+2.6x+43(0≤x≤30),y值越大,表示接受能力越強(qiáng).
(1)x在什么范圍內(nèi),學(xué)生的接受能力逐步增強(qiáng)?x在什么范圍內(nèi),學(xué)生的接受能力逐步降低?
(2)第10分鐘時(shí),學(xué)生的接受能力是多少?
(3)第幾分鐘時(shí),學(xué)生的接受能力最強(qiáng)?
解 (1)因?yàn)閥=-0.1x2+2.6x+43=-0.1(x-13)2+59.9.
所以,當(dāng)0≤x≤13時(shí),學(xué)生的接受能力逐步增強(qiáng);
當(dāng)13≤x≤30時(shí),學(xué)生的接受能力逐步下降.
(2)當(dāng)x=10時(shí),y=-0.1×(10-13)2+59.9=59,
即第10分鐘時(shí),學(xué)生的接受能力為59.
(3)當(dāng)x=13時(shí),y取最大值.
所以,在第13分鐘時(shí),學(xué)生的接受能力最強(qiáng).
- 9 -
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案