《山東省濱州市2018屆高考數(shù)學一輪復習 課題四十四 離散型隨機變量的期望與方差拓展提升學案》由會員分享,可在線閱讀,更多相關《山東省濱州市2018屆高考數(shù)學一輪復習 課題四十四 離散型隨機變量的期望與方差拓展提升學案(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
課題四十四 離散型隨機變量的分布列期望方差 拓展提升案
【學習目標】
運用分布列求離散型隨機變量的數(shù)學期望、方差,并解決一些簡單的實際問題.
1.一射擊測試中每人射擊三次,每擊中目標一次記10分,沒有擊中記0分.某人每次擊中目標的概率為,則此人得分的均值與方差分別為________,________.
2.已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(a≤X<4-a)=________.
3.設隨機變量服從分布, ,求= ,
= .
2、
4.若,且,,則的值為
A. B. C. D.
5.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機取一件,其長度誤差落在區(qū)間(3,6)內的概率為__________.(附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)
6.已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(1)求第一次檢測出的是次品且第二次檢測出的是正
3、品的概率;
(2)已知每檢測一件產(chǎn)品需要費用100元,設X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列和數(shù)學期望.
7.為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加.現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設A為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”求事件A發(fā)生的概率;
(2)設X為選出的4人中種子選手的人數(shù),求隨機變量X的分布列和數(shù)學期望.
8. 某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.
- 1 -