2022年高考數(shù)學(xué)5年真題備考題庫 第三章 第3節(jié) 三角函數(shù)圖像與性質(zhì) 理(含解析)
《2022年高考數(shù)學(xué)5年真題備考題庫 第三章 第3節(jié) 三角函數(shù)圖像與性質(zhì) 理(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)5年真題備考題庫 第三章 第3節(jié) 三角函數(shù)圖像與性質(zhì) 理(含解析)(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)5年真題備考題庫 第三章 第3節(jié) 三角函數(shù)圖像與性質(zhì) 理(含解析) 1.(xx·陜西,2,5分)函數(shù)f(x)=cos的最小正周期是( ) A. B.π C.2π D.4π 解析:選B ∵T==π,∴B正確. 2.(xx·北京,14,5分)設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0).若f(x)在區(qū)間上具有單調(diào)性,且f=f=-f,則f(x)的最小正周期為________. 解析:∵f(x)在區(qū)間上具有單調(diào)性,且f=f,∴x=和x=均不是f(x)的極值點(diǎn),其極值應(yīng)該在x==處取得,∵f=-f,∴x=也不是函數(shù)f(x)的極值點(diǎn),又f
2、(x)在區(qū)間上具有單調(diào)性,∴x=-=為f(x)的另一個(gè)相鄰的極值點(diǎn),故函數(shù)f(x)的最小正周期T=2×=π. 答案:π 3.(xx·天津,15,13分)已知函數(shù)f(x)=cos x·sin-cos2x+,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在閉區(qū)間上的最大值和最小值. 解析:(1)由已知,有 f(x)=cos x·-cos2x+ =sin x·cos x-cos2x+ =sin 2x-(1+cos 2x)+ =sin 2x-cos 2x =sin. 所以,f(x)的最小正周期T==π. (2)因?yàn)閒(x)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù). f=
3、-,f=-,f=. 所以,函數(shù)f(x)在閉區(qū)間上的最大值為,最小值為-. 4.(xx·福建,16,13分)(本小題滿分13分) 已知函數(shù)f(x)=cos x(sin x+cos x)-. (1)若0<α<,且sin α=,求f(α)的值; (2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間. 解析:解法一: (1)因?yàn)?<α<,sin α=,所以cos α=. 所以f(α)=-=. (2)因?yàn)閒(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin, 所以T==π. 由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ
4、+,k∈Z. 所以f(x)的單調(diào)遞增區(qū)間為,k∈Z. 解法二:f(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin. (1)因?yàn)?<α<,sin α=,所以α=, 從而f(α)=sin=sin=. (2)T==π. 由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z. 所以f(x)的單調(diào)遞增區(qū)間為,k∈Z. 5.(xx·重慶,17,13分)已知函數(shù)f(x)=sin(ωx+φ)ω>0,-≤φ<的圖象關(guān)于直線x=對(duì)稱,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π. (1)求ω和φ的值; (2)若f=,求cos的值.
5、 解析:(1)因f(x)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,所以f(x)的最小正周期T=π,從而ω==2. 又因f(x)的圖象關(guān)于直線x=對(duì)稱,所以 2×+φ=kπ+,k=0,±1,±2,….因-≤φ<得k=0, 所以φ=-=-. (2)由(1)得f=sin =, 所以sin =. 由<α<得0<α-<, 所以cos ===. 因此cos=sin α =sin =sincos+cossin =×+× =. 6. (xx新課標(biāo)全國Ⅰ,5分)函數(shù)f(x)=(1-cos x)sin x在[-π,π]的圖像大致為( ) 解析:選C 本題主要考查數(shù)形結(jié)合思想,以及對(duì)問題
6、的分析判斷能力.首先知函數(shù)為奇函數(shù),排除B.其次只需考慮x∈[0,π]的情形,又當(dāng)x∈[0,π]時(shí),f(x)≥0,于是排除A.∵f(x)=(1-cos x)sin x,∴f′(x)=sin x·sin x+(1-cos x)cos x=1-cos2x+cos x-cos2x=-2cos2x+cos x+1,令f′(x)=0,則cos x=1或cos x=-,結(jié)合x∈[-π,π],求得f(x)在[0,π]上的極大值點(diǎn)為π,靠近π,可知C對(duì). 7.(xx山東,5分)將函數(shù)y=sin(2x +φ)的圖象沿x軸向左平移個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則φ的一個(gè)可能取值為( ) A.
7、 B. C.0 D.- 解析:選B 本題考查三角函數(shù)的圖象變換、性質(zhì)等基礎(chǔ)知識(shí)和基本方法,考查運(yùn)算求解能力,考查方程思想.把函數(shù)y=sin(2x+φ)的圖象向左平移個(gè)單位后,得到的圖象的解析式是y=sin ,該函數(shù)是偶函數(shù)的充要條件是+φ=kπ+,k∈Z,根據(jù)選項(xiàng)檢驗(yàn)可知φ的一個(gè)可能取值為. 8.(xx湖北,5分)將函數(shù)y=cos x+sin x(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( ) A. B. C. D. 解析:選B 本題考查三角函數(shù)的圖象與性質(zhì),意在考查考生對(duì)三角函
8、數(shù)變形以及圖象平移等知識(shí)的掌握.y= cos x+sin x=2=2sin的圖象向左平移m個(gè)單位后,得到y(tǒng)=2sin的圖象,此圖象關(guān)于y軸對(duì)稱,則x=0時(shí),y=±2,即2sin =±2,所以m+=+kπ,k∈Z,由于m>0,所以mmin=,故選B. 9.(xx新課標(biāo)全國Ⅰ,5分)設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=sin x-2cos x取得最大值,則cos θ=________. 解析:本題考查三角函數(shù)誘導(dǎo)公式、兩角差的三角函數(shù)公式、三角函數(shù)的化簡運(yùn)算及求最值的方法,意在考查考生利用兩角差的三角函數(shù)公式進(jìn)行化簡、運(yùn)算和轉(zhuǎn)化的能力.先利用asin x+bcos x的結(jié)構(gòu)通過構(gòu)造進(jìn)行合并化簡為一個(gè)函
9、數(shù),然后討論函數(shù)f(x)取到最值的條件,并利用誘導(dǎo)公式求解.f(x)=sin x-2cos x= =sin (x-φ),其中sin φ=,cos φ=,當(dāng)x-φ=2kπ+(k∈Z)時(shí)函數(shù)f(x)取到最大值,即θ=2kπ++φ時(shí)函數(shù)f(x)取到最大值,所以cos θ=-sin φ=-. 答案:- 10.(xx江西,5分)函數(shù)y=sin2x+2sin2x的最小正周期T為________. 解析:本題考查三角恒等變換以及三角函數(shù)的周期性,意在考查考生的轉(zhuǎn)化與化歸能力以及運(yùn)算能力.y=sin 2x+2 sin2x=sin 2x-cos 2x+=2sin(2x-)+,所以該函數(shù)的最小正周期T==π
10、. 答案:π 11.(xx陜西,12分)已知向量a=,b=(sin x,cos 2x),x∈R,設(shè)函數(shù)f(x)=a·b. (1)求f(x)的最小正周期. (2)求f(x)在上的最大值和最小值. 解:本題主要考查向量的數(shù)量積和三角恒等變換的方法以及三角函數(shù)的有界性,意在考查考生應(yīng)用向量和三角工具解決問題的能力. f(x)=·( sin x,cos 2x) =cos xsin x-cos 2x =sin 2x-cos 2x =cos sin 2x-sincos 2x =sin. (1)f(x)的最小正周期為T===π, 即函數(shù)f(x)的最小正周期為π. (2)∵0≤x≤,
11、∴-≤2x-≤.由正弦函數(shù)的性質(zhì),知 當(dāng)2x-=,即x=時(shí),f(x)取得最大值1. 當(dāng)2x-=-,即x=0時(shí),f(x)取得的最小值-. 因此,f(x)在上的最大值是1,最小值是-. 12.(xx湖南,12分)已知函數(shù)f(x)=sin+cos,g(x)=2sin2. (1)若α是第一象限角,且f(α)=,求g(α)的值; (2)求使f(x)≥g(x)成立的x的取值集合. 解:本小題主要考查兩角差的正、余弦公式,二倍角公式,同角三角函數(shù)關(guān)系式及三角函數(shù)單調(diào)性,考查三角恒等變形能力和運(yùn)算求解能力.屬中檔題. f(x)=sin+cos =sin x-cos x+cos x+sin x
12、 =sin x, g(x)=2sin2=1-cos x. (1)由f(α)=得sin α=.又α是第一象限角,所以cos α>0. 從而g(α)=1-cos α=1-=1-=. (2)f(x)≥g(x)等價(jià)于sin x≥1-cos x,即sin x+cos x≥1. 于是sin≥. 從而2kπ+≤x+≤2kπ+,k∈Z,即2kπ≤x≤2kπ+,k∈Z. 故使f(x)≥g(x)成立的x的取值集合為. 13.(xx新課標(biāo)全國,5分)已知ω>0,函數(shù)f(x)=sin(ωx+)在(,π)單調(diào)遞減,則ω的取值范圍是( ) A.[,] B.[,] C.(0,]
13、 D.(0,2] 解析:函數(shù)f(x)=sin(ωx+)的圖像可看作是由函數(shù)f(x)=sin x的圖像先向左平移個(gè)單位得f(x)=sin(x+)的圖像,再將圖像上所有點(diǎn)的橫坐標(biāo)縮小到原來的倍,縱坐標(biāo)不變得到的,而函數(shù)f(x)=sin(x+)的減區(qū)間是[,],所以要使函數(shù)f(x)=sin(ωx+)在(,π)上是減函數(shù),需滿足解得≤ω≤. 答案:A 14.(xx湖南,5分)函數(shù)f(x)=sin x-cos(x+)的值域?yàn)? ) A.[-2,2] B.[-, ] C.[-1,1] D.[-, ] 解析:因?yàn)閒(x)=sin x-cos x+sin x=(
14、 sin x-cos x)=sin(x-),所以函數(shù)f(x)的值域?yàn)閇-, ]. 答案:B 15.(xx天津,13分)已知函數(shù)f(x)=sin(2x+)+sin(2x-)+2cos2x-1,x∈R. (1)求函數(shù)f(x)的最小正周期; (2)求函數(shù)f(x)在區(qū)間[-,]上的最大值和最小值. 解:(1)f(x)=sin 2x·cos +cos 2x·sin +sin 2x·cos-cos 2x·sin +cos 2x=sin 2x+cos 2x=sin(2x+). 所以,f(x)的最小正周期T==π. (2)因?yàn)閒(x)在區(qū)間[-,]上是增函數(shù),在區(qū)間[,]上是減函數(shù).又f(-)
15、=-1,f()=,f()=1,故函數(shù)f(x)在區(qū)間[-,]上的最大值為,最小值為-1. 15.(2011山東,5分)若函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0,]上單調(diào)遞增,在區(qū)間[,]上單調(diào)遞減,則ω=( ) A.3 B.2 C. D. 解析:由于函數(shù)f(x)=sinωx的圖像經(jīng)過坐標(biāo)原點(diǎn),根據(jù)已知并結(jié)合函數(shù)圖像可知,為這個(gè)函數(shù)的四分之一周期,故=,解得ω=. 答案:C 16.(2011安徽,5分)已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f()|對(duì)x∈R恒成立,且f()>f(π),則f(x)的單調(diào)遞增區(qū)間是(
16、) A.[kπ-,kπ+](k∈Z) B.[kπ,kπ+](k∈Z) C.[kπ+,kπ+](k∈Z) D.[kπ-,kπ](k∈Z) 解析:因?yàn)楫?dāng)x∈R時(shí),f(x)≤|f()|恒成立,所以f()=sin(+φ)=±1,可得φ=2kπ+或φ=2kπ-.因?yàn)閒()=sin(π+φ)=-sinφ>f(π)=sin(2π+φ)=sinφ,故sinφ<0,所以φ=2kπ-,所以f(x)=sin(2x-),函數(shù)的單調(diào)遞增區(qū)間為-+2kπ≤2x-≤+2kπ, 所以x∈[kπ+,kπ+](k∈Z). 答案:C 17.(2011江蘇,5分)設(shè)定義在區(qū)間(0,)上的函數(shù)y=6cosx的圖象與y=
17、5tanx的圖象交于點(diǎn)P,過點(diǎn)P作x軸的垂線,垂足為P1,直線PP1與函數(shù)y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長為________. 解析:設(shè)P(x0,y0),則由消去y0得,6cosx0=5tanx0?6cos2x0=5sinx0,即6sin2x0+5sin x0-6=0,解得sinx0=-(舍去)或,∵PP1⊥x軸,且點(diǎn)P、P1、P2共線,∴|P1P2|=sinx0=. 答案: 18.(2011浙江,4分)函數(shù)f(x)=sin2(2x-)的最小正周期是__________. 解析:f(x)==-sin 4x,故其最小正周期為=. 答案: 19.(xx廣東,14分)已知
18、函數(shù)f(x)=Asin(3x+φ)(A>0,x∈(-∞,+∞),0<φ<π)在x=時(shí)取得最大值4. (1)求f(x)的最小正周期; (2)求f(x)的解析式; (3)若f(α+)=,求sinα. 解:(1)T=. (2)由題設(shè)可知A=4且sin(3×+φ)=1, 則φ+=+2kπ,得φ=+2kπ(k∈Z). ∵0<φ<π,∴φ=. ∴f(x)=4sin(3x+). (3)∵f(α+)=4sin(2α+)=4cos2α=, ∴cos2α=. ∴sin2α=(1-cos2α)=. ∴sinα=±. 20.(xx安徽,5分)動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是(,),則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是( ) A.[0,1] B.[1,7] C.[7,12] D.[0,1]和[7,12] 解析:由已知可得該函數(shù)的最小正周期為T=12, 則ω==, 又當(dāng)t=0時(shí),A的坐標(biāo)為(,), ∴此函數(shù)為y=sin(t+),t∈[0,12], 可解得此函數(shù)的單調(diào)遞增區(qū)間是[0,1]和[7,12]. 答案:D
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功