欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5

上傳人:彩*** 文檔編號(hào):105470476 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):7 大小:93.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018版高中數(shù)學(xué) 第二章 數(shù)列 習(xí)題課 數(shù)列求和學(xué)案 新人教B版必修5(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 習(xí)題課 數(shù)列求和 學(xué)習(xí)目標(biāo) 1.掌握分組分解求和法的使用情形和解題要點(diǎn).2.掌握奇偶并項(xiàng)求和法的使用情形和解題要點(diǎn).3.掌握裂項(xiàng)相消求和法的使用情形和解題要點(diǎn).4.進(jìn)一步熟悉錯(cuò)位相減法. 知識(shí)點(diǎn)一 分組分解求和法 思考 求和:1+2+3+…+(n+).       梳理 分組分解求和的基本思路:通過分解每一項(xiàng)重新組合,化歸為等差數(shù)列和等比數(shù)列求和. 知識(shí)點(diǎn)二 奇偶并項(xiàng)求和法 思考 求和12-22+32-42+…+992-1002.       梳理 奇偶并項(xiàng)求和的基本思路:有些數(shù)列單獨(dú)看求和困難,但相鄰項(xiàng)結(jié)合后會(huì)變成熟悉的等差數(shù)

2、列、等比數(shù)列求和.但當(dāng)求前n項(xiàng)和而n是奇數(shù)還是偶數(shù)不確定時(shí),往往需要討論. 知識(shí)點(diǎn)三 裂項(xiàng)相消求和法 思考 我們知道 =-,試用此公式求和:++…+.     梳理 如果數(shù)列的項(xiàng)能裂成前后抵消的兩項(xiàng),可用裂項(xiàng)相消求和,此法一般先研究通項(xiàng)的裂法,然后仿照裂開每一項(xiàng).裂項(xiàng)相消求和常用公式: (1)=______________________; (2)=______________________; (3)=____________________________; (4)=[-]. 類型一 分組分解求和 例1 求和:Sn=2+2+…+2(x≠0).  

3、   反思與感悟 某些數(shù)列,通過適當(dāng)分組,可得出兩個(gè)或幾個(gè)等差數(shù)列或等比數(shù)列,進(jìn)而利用等差數(shù)列或等比數(shù)列的求和公式分別求和,從而得出原數(shù)列的和. 跟蹤訓(xùn)練1 求數(shù)列1,1+a,1+a+a2,…,1+a+a2+…+an-1,…的前n項(xiàng)和Sn(其中a≠0,n∈N+).       類型二 裂項(xiàng)相消求和 例2 求和:+++…+,n≥2,n∈N+. 引申探究 求和:+++…+, n≥2,n∈N+.          反思與感悟 求和前一般先對(duì)數(shù)列的通項(xiàng)公式an變形,如果數(shù)列的通項(xiàng)公式可轉(zhuǎn)化為f(n+1)-f(n)的形式,常采用裂項(xiàng)求和法. 跟蹤

4、訓(xùn)練2 求和: 1+++…+,n∈N+.     類型三 奇偶并項(xiàng)求和 例3 求和:Sn=-1+3-5+7-…+(-1)n(2n-1).       反思與感悟 通項(xiàng)中含有(-1)n的數(shù)列求前n項(xiàng)和時(shí)可以考慮用奇偶并項(xiàng)法,分項(xiàng)數(shù)為奇數(shù)和偶數(shù)分別進(jìn)行求和. 跟蹤訓(xùn)練3 已知數(shù)列-1,4,-7,10,…,(-1)n·(3n-2),…,求其前n項(xiàng)和Sn.         1.?dāng)?shù)列{1+2n-1}的前n項(xiàng)和為________. 2.?dāng)?shù)列{}的前2 016項(xiàng)和為________. 3.已知在數(shù)列{an}中,a1=1,a2=2,當(dāng)整

5、數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S5=________. 4.已知數(shù)列an=則S100=________. 求數(shù)列的前n項(xiàng)和,一般有下列幾種方法. 1.錯(cuò)位相減 適用于一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘構(gòu)成的數(shù)列求和. 2.分組求和 把一個(gè)數(shù)列分成幾個(gè)可以直接求和的數(shù)列. 3.裂項(xiàng)相消 有時(shí)把一個(gè)數(shù)列的通項(xiàng)公式分成兩項(xiàng)差的形式,相加過程消去中間項(xiàng),只剩有限項(xiàng)再求和. 4.奇偶并項(xiàng) 當(dāng)數(shù)列通項(xiàng)中出現(xiàn)(-1)n或(-1)n+1時(shí),常常需要對(duì)n取值的奇偶性進(jìn)行分類討論. 5.倒序相加 例如,等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法. 答案精析 問

6、題導(dǎo)學(xué) 知識(shí)點(diǎn)一 思考 1+2+3+…+(n+)=(1+2+3+…+n)+(+++…+) =+ =+1-. 知識(shí)點(diǎn)二 思考 12-22+32-42+…+992-1002 =(12-22)+(32-42)+…+(992-1002) =(1-2)(1+2)+(3-4)(3+4)+…+(99-100)(99+100) =-(1+2+3+4+…+99+100) =-5 050. 知識(shí)點(diǎn)三 思考 由=-得 ++…+ =1-+-+…+- =1-. 梳理 (1)(-) (2)(-) (3)(-) 題型探究 類型一 例1 解 當(dāng)x≠±1時(shí), Sn=2+2+…+2

7、=++…+ =(x2+x4+…+x2n)+2n+ =++2n =+2n; 當(dāng)x=±1時(shí),Sn=4n. 綜上知, Sn= 跟蹤訓(xùn)練1  Sn= 類型二 例2 解 ∵= =, ∴原式= = =-(n≥2,n∈N+). 引申探究 解 ∵==1+, ∴原式=+++…+ =(n-1)+ , 以下同例2解法. 跟蹤訓(xùn)練2 解 ∵an= ==2, ∴Sn= 2 =. 類型三 例3 解 當(dāng)n為奇數(shù)時(shí), Sn=(-1+3)+(-5+7)+(-9+11)+…+ [(-2n+5)+(2n-3)]+(-2n+1) =2·+(-2n+1)=-n. 當(dāng)n為偶數(shù)時(shí), Sn=(-1+3)+(-5+7)+…+[(-2n+3)+(2n-1)]=2·=n. ∴Sn=(-1)nn (n∈N+). 跟蹤訓(xùn)練3  Sn= 當(dāng)堂訓(xùn)練 1.n+2n-1 2. 3.21 4.5 000 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!