2022年新人教版高中數(shù)學(xué)必修1《第一章集合與函數(shù)的概念》全章優(yōu)秀教案教學(xué)設(shè)計
《2022年新人教版高中數(shù)學(xué)必修1《第一章集合與函數(shù)的概念》全章優(yōu)秀教案教學(xué)設(shè)計》由會員分享,可在線閱讀,更多相關(guān)《2022年新人教版高中數(shù)學(xué)必修1《第一章集合與函數(shù)的概念》全章優(yōu)秀教案教學(xué)設(shè)計(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年新人教版高中數(shù)學(xué)必修1《第一章集合與函數(shù)的概念》全章優(yōu)秀教案教學(xué)設(shè)計 教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。 課 型:新授課 教學(xué)目標:(1)通過實例,了解集合的含義,體會元素與集合的 “屬于”關(guān)系、集合相等的含義; (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 教學(xué)重點:集合的基本概念與表示方法; 教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描
2、述法,正確表示一些簡單的集合; 教學(xué)過程: 一、 引入課題 引例1:(數(shù)學(xué)家和牧民的故事)牧民非常喜歡數(shù)學(xué),但不知道集合是什么,于是他請教一位數(shù)學(xué)家.集合是不定義的概念,數(shù)學(xué)家很難回答牧民的問題.有一天他來到牧場,看到牧民正把羊往羊圈里趕,等到牧民把全部羊趕入羊圈關(guān)好門.數(shù)學(xué)家靈機一動,高興地告訴牧民:“你看這就是集合!” 2:軍訓(xùn)時當教官一聲口令:“高一(14)班同學(xué)到操場集合” 在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定對象的總體,而不是個別的對象,為此,我們將學(xué)習一個新的概念——集合(宣布課題),即是一些研究對象的總體。 閱讀課本P2-P3內(nèi)容 二、 新
3、課教學(xué) (一)集合的有關(guān)概念 1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。 2. 一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。 3. 思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點評,進而講解下面的問題。 4. 關(guān)于集合的元素的特征 (1)確定性:設(shè)A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。 (2)互異性:一個給定集合中的元素,指屬于這個集
4、合的互不相同的個體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。 (3)集合相等:構(gòu)成兩個集合的元素完全一樣 5. 元素與集合的關(guān)系; (1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A (2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作aA(舉例) 6. 常用數(shù)集及其記法 非負整數(shù)集(或自然數(shù)集),記作N 正整數(shù)集,記作N*或N+; 整數(shù)集,記作Z 有理數(shù)集,記作Q 實數(shù)集,記作R (二)集合的表示方法 我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。 (1)
5、 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(課本例1) 思考2,(課本P4思考)引入描述法 說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。 (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{x|x是直角三角形},…; 例2.(課本例2) 說明:(課本
6、P5最后一段) 思考3:(課本P5思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素 {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同。 辨析:這里的{ }已包含“所有”的意思,所以不必寫{x|x是全體整數(shù)}。下列寫法{x|x是實數(shù)集},{R}也是錯誤的。 說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (三)課堂練習(課本P5練習) 三、 歸納小結(jié) 本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法
7、、描述法。 四、 作業(yè)布置 書面作業(yè):習題1.1,第1- 4題 五、 板書設(shè)計(略) 課題:§1.1.2集合間的基本關(guān)系 教材分析:類比實數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系 了解空集的含義 課 型:新授課 教學(xué)目的:(1)理解集合之間的包含、相等關(guān)系的含義; (2)理解子集、真子集的概念; (3)能利用Venn圖表達集合間的關(guān)系; (4)理解空集的含義。 教學(xué)重點:子集與空集的概念;用Venn圖表達集合間的關(guān)系。 教學(xué)難點:弄清元素與子集 、屬于與包含之間的區(qū)別; 教學(xué)過程: 一、引入課題 1、 復(fù)習元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白:
8、 (1)0 N;(2) Q;(3)-1.5 R 2、 類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(宣布課題) 二、新課教學(xué) (一) 集合與集合之間的“包含”關(guān)系; A={1,2,3},B={1,2,3,4} 集合A是集合B的部分元素構(gòu)成的集合,我們說集合B包含集合A; 如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集(subset)。 記作: 讀作:A含于(is contained in)B,或B包含(contains)A 當集合A不含于集合B時,記作A B 用Ve
9、nn圖表示兩個集合間的“包含”關(guān)系 B A (二) 集合與集合之間的 “相等”關(guān)系; ,則中的元素是一樣的,因此 即 練習 結(jié)論: 任何一個集合是它本身的子集 (三) 真子集的概念 若集合,存在元素,則稱集合A是集合B的真子集(proper subset)。 記作:A B(或B A) 舉例(由學(xué)生舉例,共同辨析) (四) 空集的概念 (實例引入空集概念) 不含有任何元素的集合稱為空集(empty set),記作: 規(guī)定: 空集是任何集合的子集,是任何非空集合的真子集。 (五) 結(jié)論: ,且,則 (六)
10、 例題 (1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。 (2)化簡集合A={x|x-3>2},B={x|x5},并表示A、B的關(guān)系; (七) 課堂練習 (八) 歸納小結(jié),強化思想 兩個集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個實數(shù)間的大小關(guān)系,同時還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法; (九) 作業(yè)布置 1、 書面作業(yè):習題1.1 第5題 2、 提高作業(yè): 已知集合,≥,且滿足,求實數(shù)的取值范圍。 設(shè)集合, ,試用Venn圖表示它們之間的關(guān)系。 板書設(shè)計(略) 課題:§1.3集合的基本運算(一) 教學(xué)目的:(1)
11、理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集; (2)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。 課 型:新授課 教學(xué)重點:集合的交集與并集的概念; 教學(xué)難點:集合的交集與并集 “是什么”,“為什么”,“怎樣做”; 教學(xué)過程: 一、 引入課題 我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢? 觀察下列各個集合,你能說出集合C與集合A、B之間的關(guān)系嗎? (1)A={1,2,3,4,5},B={2,5,8,9},C={2,5} (2) A={1,2,3,4,5},
12、B={2,5,8,9},C={1,2,3,4,5,8,9} 引入并集、交集概念。 二、 新課教學(xué) 1. 并集 一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union) 記作:A∪B 讀作:“A并B” 即: A∪B={x|x∈A,或x∈B} A∪B A B A Venn圖表示: ? 說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個元素)。 例題(P9-10例4、例5) 說明:連續(xù)的(用不等式表示的)實數(shù)集合可以用數(shù)軸上的
13、一段封閉曲線來表示。 問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。 2. 交集 一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。 記作:A∩B 讀作:“A交B” 即: A∩B={x|∈A,且x∈B} 交集的Venn圖表示 說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。 例題(P9-10例6、例7) 拓展:求下列各圖中集合A與B的并集與交集 A B A(B) A B B A B A
14、 說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集 3. 求集合的并、交是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。 4. 集合基本運算的一些結(jié)論: (A∩B)A,(A∩B)B,A∩A=A,A∩=,A∩B=B∩A A(A∪B),B(A∪B),A∪A=A,A∪=A,A∪B=B∪A 若A∩B=A,則AB,反之也成立 若A∪B=B,則AB,反之也成立 若x∈(A∩B),則x∈A且
15、x∈B 若x∈(A∪B),則x∈A,或x∈B 三、課堂練習 P11、1~3 四、作業(yè)布置:略 課題:§1.3集合的基本運算(二) 教學(xué)目的:(1)理解全集以及在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。 課 型:新授課 教學(xué)重點:集合的全集、補集的概念; 教學(xué)難點:集合的全集、補集以及求集合中元素個數(shù)問題。 教學(xué)過程: 一、 引入課題 問:我班全體同學(xué)有一部分參加了校運動會,在這個問題需關(guān)注的集合有幾個? 二、新課教學(xué) 1. 全集、補集 全集:一般地,如果一個集合含有
16、我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。 補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(plementary set),簡稱為集合A的補集, 記作:CUA 即:CUA={x|x∈U且x∈A} 補集的Venn圖表示 說明:補集的概念必須要有全集的限制 例題(P12例8、例9) 例10、設(shè)全集U={-1,1,a2-2a-3}, A={1, |b|-3}若:CUA={5}, 求a, b的值 2. 求集合的補集運算,運算結(jié)果仍然還是集合,在處理有關(guān)交集與并集、補集的問題時,
17、常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。 3. 補集的結(jié)論: (CUA)∪A=U,(CUA)∩A= 4.元素個數(shù)問題: card(A∪B)=card(A)+card(B)-card(A∩B) 例8、(1)開運動會時,高一某班共有28名同學(xué)參加比賽,有15人參加游泳比賽,有8人參加田徑比賽,有14人參加球類比賽,同時參加游泳和田徑比賽的有3人, 同時參加游泳和球類比賽的有3人,沒有人同時參加三項比賽,那么同時參加球類和田徑比賽的有幾人?只參加游泳一項比賽的有幾人? (2) 設(shè)S={1, 2, 3, 4, 5} , A
18、∩B={2} , (CSA)∩B={4},(CSA)∩(CSB)={1, 5},求集合A和B。 三、 課堂練習 P11、4 四、 作業(yè)布置;略 課題:§1.2.1函數(shù)的概念(一) 教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想. 教學(xué)目的:(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用; (2)了解構(gòu)成函數(shù)的要素; (3)會求一些簡單函數(shù)的定義域和值域; 教
19、學(xué)重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù); 教學(xué)難點:符號“y=f(x)”的含義,及函數(shù)的定義 教學(xué)過程: 一、 引入課題 1. 復(fù)習初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想; 2. 閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想: (1)炮彈的射高與時間的變化關(guān)系問題; (2)南極臭氧空洞面積與時間的變化關(guān)系問題; (3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題 備用實例: 我國2003年4月份非典疫情統(tǒng)計: 日 期 22 23 24 25 26 27 28 29 30 新增確診病例數(shù) 106
20、105 89 103 113 126 98 152 101 3. 引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系; 4. 根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系. 二、 新課教學(xué) (一)函數(shù)的有關(guān)概念 1.函數(shù)的概念: 設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function). 記作: y=f(x),x∈A. 其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與
21、x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range). 注意: “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”; 函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x. 2. 構(gòu)成函數(shù)的三要素: 定義域、對應(yīng)關(guān)系和值域 3.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論 (由學(xué)生完成,師生共同分析講評) (二)典型例題 1.求函數(shù)定義域 課本P20例1 解:(略) 說明: 函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例; 如果只給出解析式y(tǒng)=f(x),
22、而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合; 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 鞏固練習:課本P22第1題 2.判斷兩個函數(shù)是否為同一函數(shù) 課本P21例2 解:(略) 說明: 構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù)) 兩個函數(shù)相等當且僅當它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。 鞏固練習: 課本P22第2題 判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由? (1)f
23、 ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = (三)課堂練習 求下列函數(shù)的定義域 (1) (2) (3) (4) 三、 歸納小結(jié),強化思想 從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目。 四、 作業(yè)布置 課題:§1.2.1函數(shù)的概念(二) 教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.
24、高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想. 教學(xué)目的:(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用; (2)了解構(gòu)成函數(shù)的要素; (3)會求一些簡單函數(shù)的定義域和值域; (4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域; 教學(xué)重點:區(qū)間的概念,求函數(shù)的定義域和值域 教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示; 教學(xué)過程: 一、 復(fù)習 1. 函數(shù)的概念 2. 函數(shù)的三要素 3.
25、 定義域、值域
4. 同一函數(shù)的判斷依據(jù)
二、 新課教學(xué)
1.區(qū)間的概念
在研究函數(shù)時,常常用到區(qū)間的概念,它是數(shù)學(xué)中常用的述語和符號.
設(shè)a,b∈R ,且a 26、 解:(略)
說明:
函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例;
如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;
函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
2.例2.已知,則由此你能發(fā)現(xiàn)什么一般結(jié)論?
解:(略)
說明:
(三)課堂練習P19、T2
三、 歸納小結(jié),強化思想
求函數(shù)常用的方法比如配方法,換元法所解決的類型,引入了區(qū)間的概念來表示集合。
四、 作業(yè)布置
課題:§1.2.2函數(shù)的表示法(一)
教學(xué)目的:(1)明確函數(shù)的三種表示方法;
(2)在實際情境中,會根據(jù)不同的需 27、要選擇恰當?shù)姆椒ū硎竞瘮?shù);
(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用;
(4)糾正認為“y=f(x)”就是函數(shù)的解析式的片面錯誤認識.
教學(xué)重點:函數(shù)的三種表示方法,分段函數(shù)的概念.
教學(xué)難點:根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù),什么才算“恰當”?分段函數(shù)的表示及其圖象.
教學(xué)過程:
一、 引入課題
5. 復(fù)習:函數(shù)的概念;
6. 常用的函數(shù)表示法及各自的優(yōu)點:
(1)解析法;
(2)圖象法;
(3)列表法.
二、 新課教學(xué)
(一)典型例題
例1.某種筆記本的單價是5元,買x (x∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數(shù)y=f 28、(x) .
分析:注意本例的設(shè)問,此處“y=f(x)”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應(yīng)值表.
解:(略)
注意:
函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù);
解析法:必須注明函數(shù)的定義域;
圖象法:是否連線;
列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.
鞏固練習:
課本P27練習第1題
例2.下表是某校高一(1)班三位同學(xué)在高一學(xué)年度幾次數(shù)學(xué)測試的成績及班級及班級平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王 偉
98
87
91
29、
92
88
95
張 城
90
76
88
75
86
80
趙 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
請你對這三們同學(xué)在高一學(xué)年度的數(shù)學(xué)學(xué)習情況做一個分析.
分析:本例應(yīng)引導(dǎo)學(xué)生分析題目要求,做學(xué)情分析,具體要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
本例為了研究學(xué)生的學(xué)習情況,將離散的點用虛線連接,這樣更便于研究成績的變化特點;
本例能否用解析法?為什么?
鞏固練習:
課本P27練習第2題
例3.畫出函數(shù)y = | x | .
解 30、:(略)
鞏固練習:課本P27練習第3題
拓展練習:
任意畫一個函數(shù)y=f(x)的圖象,然后作出y=|f(x)| 和 y=f (|x|) 的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系.
課本P27練習第3題
例4.某市“招手即?!惫财嚨钠眱r按下列規(guī)則制定:
(1)5公里以內(nèi)(含5公里),票價2元;
(2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算).
如果某條線路的總里程為20公里,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.
分析:本例是一個實際問題,有具體的實際意義.該公共汽車招手就停,所以行車里程可以不取整數(shù).
解:設(shè)票價為 31、y元,里程為x公里,同根據(jù)題意,自變量x的取值范圍是(0,20].
由“招手即停”公共汽車票價制定的規(guī)則,可得到以下函數(shù)解析式:
根據(jù)這個函數(shù)解析式,可畫出函數(shù)圖象,圖略。
注意:
本例具有實際背景,所以解題時應(yīng)考慮其實際意義;
本題可否用列表法表示函數(shù),如果可以,應(yīng)怎樣列表?
實踐與拓展:
請你設(shè)計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路)
說明:象上面兩例中的函數(shù),稱為分段函數(shù).
注意:分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變 32、量的取值情況.
三、 歸納小結(jié),強化思想
理解函數(shù)的三種表示方法,在具體的實際問題中能夠選用恰當?shù)谋硎痉▉肀硎竞瘮?shù),注意分段函數(shù)的表示方法及其圖象的畫法.
四、 作業(yè)布置
課題:§1.2.2函數(shù)的表示法(二)
教學(xué)目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)結(jié)合簡單的對應(yīng)圖示,了解一一映射的概念.
教學(xué)重點:映射的概念.
教學(xué)難點:映射的概念.
教學(xué)過程:
一、 引入課題
復(fù)習初中已經(jīng)遇到過的對應(yīng):
1. 對于任何一個實數(shù)a,數(shù)軸上都有唯一的點P和它對應(yīng);
2. 對于坐標平面內(nèi)任何一個點A,都有唯一的有序?qū)崝?shù)對(x,y)和它對應(yīng);
3. 對于任 33、意一個三角形,都有唯一確定的面積和它對應(yīng);
4. 某影院的某場電影的每一張電影票有唯一確定的座位與它對應(yīng);
5. 函數(shù)的概念.
二、 新課教學(xué)
1. 我們已經(jīng)知道,函數(shù)是建立在兩個非空數(shù)集間的一種對應(yīng),若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應(yīng)關(guān)系,這種的對應(yīng)就叫映射(mapping)(板書課題).
2. 先看幾個例子,兩個集合A、B的元素之間的一些對應(yīng)關(guān)系
(1)開平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3. 什么叫做映射?
一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合 34、A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從集合A到集合B的一個映射(mapping).
記作“f:AB”
說明:
(1)這兩個集合有先后順序,A到B的射與B到A的映射是截然不同的.其中f表示具體的對應(yīng)法則,可以用漢字敘述.
(2)“都有唯一”什么意思?
包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思。
4. 例題分析:下列哪些對應(yīng)是從集合A到集合B的映射?
(1)A={P | P是數(shù)軸上的點},B=R,對應(yīng)關(guān)系f:數(shù)軸上的點與它所代表的實數(shù)對應(yīng);
(2)A={ P | P是平面直角體系中的點},B={(x,y)| 35、 x∈R,y∈R},對應(yīng)關(guān)系f:平面直角體系中的點與它的坐標對應(yīng);
(3)A={三角形},B={x | x是圓},對應(yīng)關(guān)系f:每一個三角形都對應(yīng)它的內(nèi)切圓;
(4)A={x | x是新華中學(xué)的班級},B={x | x是新華中學(xué)的學(xué)生},對應(yīng)關(guān)系f:每一個班級都對應(yīng)班里的學(xué)生.
思考:
將(3)中的對應(yīng)關(guān)系f改為:每一個圓都對應(yīng)它的內(nèi)接三角形;(4)中的對應(yīng)關(guān)系f改為:每一個學(xué)生都對應(yīng)他的班級,那么對應(yīng)f: BA是從集合B到集合A的映射嗎?
5. 完成課本練習
三、 作業(yè)布置
補充習題
課題:§1.3.1函數(shù)的單調(diào)性
教學(xué)目的:(1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單 36、調(diào)性及其幾何意義;
(2)學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);
(3)能夠熟練應(yīng)用定義判斷數(shù)在某區(qū)間上的的單調(diào)性.
教學(xué)重點:函數(shù)的單調(diào)性及其幾何意義.
教學(xué)難點:利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.
教學(xué)過程:
一、 引入課題
1. 觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
y
x
1
-1
1
-1
y
x
1
-1
1
-1
y
x
1
-1
1
-1
隨x的增大,y的值有什么變化?
能否看出函數(shù)的最大、最小值?
y
x
1
-1
1
-1
函數(shù)圖象是 37、否具有某種對稱性?
2. 畫出下列函數(shù)的圖象,觀察其變化規(guī)律:
1.f(x) = x
從左至右圖象上升還是下降 ______?
在區(qū)間 ____________ 上,隨著x的增
大,f(x)的值隨著 ________ .
y
x
1
-1
1
-1
2.f(x) = -2x+1
從左至右圖象上升還是下降 ______?
在區(qū)間 ____________ 上,隨著x的增
大,f(x)的值隨著 ________ .
y
x
1
-1
1
-1
3.f(x) = x2
在區(qū)間 ____________ 上,f(x)的值隨
著x的增 38、大而 ________ .
在區(qū)間 ____________ 上,f(x)的值隨
著x的增大而 ________ .
二、 新課教學(xué)
(一)函數(shù)單調(diào)性定義
1.增函數(shù)
一般地,設(shè)函數(shù)y=f(x)的定義域為I,
如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1 39、當x1 40、數(shù)圖象說明函數(shù)的單調(diào)性.
解:(略)
鞏固練習:課本P38練習第1、2題
例2.(教材P34例2)根據(jù)函數(shù)單調(diào)性定義證明函數(shù)的單調(diào)性.
解:(略)
鞏固練習:
課本P38練習第3題;
證明函數(shù)在(1,+∞)上為增函數(shù).
例3.借助計算機作出函數(shù)y =-x2 +2 | x | + 3的圖象并指出它的的單調(diào)區(qū)間.
解:(略)
思考:畫出反比例函數(shù)的圖象.
這個函數(shù)的定義域是什么?
它在定義域I上的單調(diào)性怎樣?證明你的結(jié)論.
說明:本例可利用幾何畫板、函數(shù)圖象生成軟件等作出函數(shù)圖象.
三、 歸納小結(jié),強化思想
函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證 41、明.畫函數(shù)圖象通常借助計算機,求函數(shù)的單調(diào)區(qū)間時必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:
取 值 → 作 差 → 變 形 → 定 號 → 下結(jié)論
四、 作業(yè)布置
1. 書面作業(yè):課本P45 習題1.3(A組) 第1- 5題.
2. 提高作業(yè):設(shè)f(x)是定義在R上的增函數(shù),f(xy)=f(x)+f(y),
求f(0)、f(1)的值;
若f(3)=1,求不等式f(x)+f(x-2)>1的解集.
課題:§1.3.1函數(shù)的最大(?。┲?
教學(xué)目的:(1)理解函數(shù)的最大(小)值及其幾何意義;
(2)學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);
教學(xué)重點:函數(shù)的最大(?。┲导捌鋷?/p>
42、何意義.
教學(xué)難點:利用函數(shù)的單調(diào)性求函數(shù)的最大(小)值.
教學(xué)過程:
一、 引入課題
畫出下列函數(shù)的圖象,并根據(jù)圖象解答下列問題:
說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性;
指出圖象的最高點或最低點,并說明它能體現(xiàn)函數(shù)的什么特征?
(1) (2)
(3) (4)
二、 新課教學(xué)
(一)函數(shù)最大(小)值定義
1.最大值
一般地,設(shè)函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足:
(1)對于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,稱M是函數(shù)y=f(x)的最大值(Maximum 43、Value).
思考:仿照函數(shù)最大值的定義,給出函數(shù)y=f(x)的最小值(Minimum Value)的定義.(學(xué)生活動)
注意:
函數(shù)最大(?。┦紫葢?yīng)該是某一個函數(shù)值,即存在x0∈I,使得f(x0) = M;
函數(shù)最大(?。?yīng)該是所有函數(shù)值中最大(?。┑?,即對于任意的x∈I,都有f(x)≤M(f(x)≥M).
2.利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲档姆椒?
利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值
利用圖象求函數(shù)的最大(?。┲?
利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲?
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函 44、數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
(二)典型例題
例1.(教材P36例3)利用二次函數(shù)的性質(zhì)確定函數(shù)的最大(?。┲担?
解:(略)
說明:對于具有實際背景的問題,首先要仔細審清題意,適當設(shè)出變量,建立適當?shù)暮瘮?shù)模型,然后利用二次函數(shù)的性質(zhì)或利用圖象確定函數(shù)的最大(?。┲担?
25
鞏固練習:如圖,把截面半徑為
25cm的圓形木頭鋸成矩形木料,
如果矩形一邊長為x,面積為y
試將y表示成x的函數(shù),并畫出
函數(shù)的大致圖象,并判斷怎樣鋸
才能使得截面 45、面積最大?
例2.(新題講解)
旅 館 定 價
一個星級旅館有150個標準房,經(jīng)過一段時間的經(jīng)營,經(jīng)理得到一些定價和住房率的數(shù)據(jù)如下:
房價(元)
住房率(%)
160
55
140
65
120
75
100
85
欲使每天的的營業(yè)額最高,應(yīng)如何定價?
解:根據(jù)已知數(shù)據(jù),可假設(shè)該客房的最高價為160元,并假設(shè)在各價位之間,房價與住房率之間存在線性關(guān)系.
設(shè)為旅館一天的客房總收入,為與房價160相比降低的房價,因此當房價為元時,住房率為,于是得
=150··.
由于≤1,可知0≤≤90.
因此問題轉(zhuǎn)化為:當0≤≤90時,求的最大值的問題.
將的兩邊同除 46、以一個常數(shù)0.75,得1=-2+50+17600.
由于二次函數(shù)1在=25時取得最大值,可知也在=25時取得最大值,此時房價定位應(yīng)是160-25=135(元),相應(yīng)的住房率為67.5%,最大住房總收入為13668.75(元).
所以該客房定價應(yīng)為135元.(當然為了便于管理,定價140元也是比較合理的)
例3.(教材P37例4)求函數(shù)在區(qū)間[2,6]上的最大值和最小值.
解:(略)
注意:利用函數(shù)的單調(diào)性求函數(shù)的最大(?。┲档姆椒ㄅc格式.
鞏固練習:(教材P38練習4)
三、 歸納小結(jié),強化思想
函數(shù)的單調(diào)性一般是先根據(jù)圖象判斷,再利用定義證明.畫函數(shù)圖象通常借助計算機,求函 47、數(shù)的單調(diào)區(qū)間時必須要注意函數(shù)的定義域,單調(diào)性的證明一般分五步:
取 值 → 作 差 → 變 形 → 定 號 → 下結(jié)論
四、 作業(yè)布置
3. 書面作業(yè):課本P45 習題1.3(A組) 第6、7、8題.
A
B
C
D
提高作業(yè):快艇和輪船分別從A地和C地同時開出,如下圖,各沿箭頭方向航行,快艇和輪船的速度分別是45 km/h和15 km/h,已知AC=150km,經(jīng)過多少時間后,快艇和輪船之間的距離最短?
課題:§1.3.2函數(shù)的奇偶性
教學(xué)目的:(1)理解函數(shù)的奇偶性及其幾何意義;
(2)學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);
(3)學(xué)會判 48、斷函數(shù)的奇偶性.
教學(xué)重點:函數(shù)的奇偶性及其幾何意義.
教學(xué)難點:判斷函數(shù)的奇偶性的方法與格式.
教學(xué)過程:
一、引入課題
1.實踐操作:(也可借助計算機演示)
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數(shù)y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點的坐標有什么特殊的關(guān)系?
答案:(1)可以作為某個函 49、數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對稱;
(2)若點(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等.
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標系中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,則這個圖形可否作為某個函數(shù)y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點的坐標有什么特殊的關(guān)系?
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于原點對稱;
(2)若點(x 50、,f(x))在函數(shù)圖象上,則相應(yīng)的點(-x,-f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標也一定互為相反數(shù).
2.觀察思考(教材P39、P40觀察思考)
五、 新課教學(xué)
(一)函數(shù)的奇偶性定義
象上面實踐操作中的圖象關(guān)于y軸對稱的函數(shù)即是偶函數(shù),操作中的圖象關(guān)于原點對稱的函數(shù)即是奇函數(shù).
1.偶函數(shù)(even function)
一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義
2.奇函數(shù)(odd function)
一般地,對于函數(shù)f(x)的定義 51、域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).
(二)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱.
(三)典型例題
1.判斷函數(shù)的奇偶性
例1.(教材P35例5)應(yīng)用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用 52、定義判斷函數(shù)奇偶性的格式步驟:
首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點對稱;
確定f(-x)與f(x)的關(guān)系;
作出相應(yīng)結(jié)論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
鞏固練習:(教材P41例5)
例2.設(shè)f(x)是R上的偶函數(shù),且當x∈(0,+∞)時f(x)=2x+1,求f(x)在(-∞,0)上的解析式.
解:(略)
說明:函數(shù)具有奇偶性的一個必要條件是,定義域關(guān)于原點對稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點對 53、稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
2.利用函數(shù)的奇偶性補全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對稱;
奇函數(shù)的圖象關(guān)于原點對稱.
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
鞏固練習:(教材P42練習1)
3.函數(shù)的奇偶性與單調(diào)性的關(guān)系
(學(xué)生活動)舉幾個簡單的奇函數(shù)和偶函數(shù)的例子,并畫出其圖象,根據(jù)圖象判斷奇函數(shù)和偶函數(shù)的單調(diào)性具有什么特殊的特征.
例3.已知f(x)是奇函數(shù),在(0,+∞)上是增函數(shù),證明:f(x)在(-∞,0)上也是增函數(shù)
解:(由一名學(xué)生板演,然后師生共同評析,規(guī)范格式與步驟)
規(guī)律:
偶函數(shù)在關(guān)于原點對稱的區(qū)間 54、上單調(diào)性相反;
奇函數(shù)在關(guān)于原點對稱的區(qū)間上單調(diào)性一致.
六、 歸納小結(jié),強化思想
本節(jié)主要學(xué)習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì).
七、 作業(yè)布置
4. 書面作業(yè):課本P46 習題1.3(A組) 第9、10題, B組第2題.
2.補充作業(yè):判斷下列函數(shù)的奇偶性:
;
;
3. 課后思考:
已知是定義在R上的函數(shù),
設(shè),
試判斷的奇偶性;
試判斷的關(guān)系;
由此你能猜想得出什么樣的結(jié)論,并說明理由.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。