欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文

上傳人:xt****7 文檔編號:105694986 上傳時間:2022-06-12 格式:DOC 頁數(shù):6 大小:469.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文_第1頁
第1頁 / 共6頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文_第2頁
第2頁 / 共6頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題五 立體幾何 專題對點(diǎn)練17 空間中的垂直、夾角及幾何體的體積 文 1. (2018江蘇,15)在平行六面體ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求證:(1)AB∥平面A1B1C; (2)平面ABB1A1⊥平面A1BC. 2. 如圖,在三棱臺ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3. (1)求證:BF⊥平面ACFD; (2)求直線BD與平面ACFD所成角的余弦值. 3.由四棱柱ABCD-A1

2、B1C1D1截去三棱錐C1-B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,O為AC與BD的交點(diǎn),E為AD的中點(diǎn),A1E⊥平面ABCD. (1)證明:A1O∥平面B1CD1; (2)設(shè)M是OD的中點(diǎn),證明:平面A1EM⊥平面B1CD1. 4. 如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=2AD=8,AB=2DC=4. (1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD; (2)求四棱錐P-ABCD的體積. 5. 如圖,在四棱錐P-

3、ABCD中,底面ABCD是平行四邊形,∠ADC=45°,AD=AC=2,O為AC的中點(diǎn),PO⊥平面ABCD,且PO=6,M為PD的中點(diǎn). (1)證明:AD⊥平面PAC; (2)求直線AM與平面ABCD所成角的正切值. 6.(2018北京,文18) 如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分別為AD,PB的中點(diǎn). 求證:(1)PE⊥BC; (2)平面PAB⊥平面PCD; (3)EF∥平面PCD. 7.如圖①,在直角梯形ABCD中,AD∥BC,∠ABC=90

4、°,AB=BC=2,AD=6,CE⊥AD于點(diǎn)E,把△DEC沿CE折到D'EC的位置,使D'A=2,如圖②.若G,H分別為D'B,D'E的中點(diǎn). (1)求證:GH⊥D'A; (2)求三棱錐C-D'BE的體積. 8. 如圖,在四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形,AB=BC=2,CD=SD=1. (1)證明:SD⊥平面SAB; (2)求四棱錐S-ABCD的高. 專題對點(diǎn)練17答案 1.證明 (1)在平行六面體ABCD-A1B1C1D1中,AB∥A1B1. 因?yàn)锳B?平面A1B1C,A1B1

5、?平面A1B1C, 所以AB∥平面A1B1C. (2)在平行六面體ABCD-A1B1C1D1中,四邊形ABB1A1為平行四邊形. 又因?yàn)锳A1=AB,所以四邊形ABB1A1為菱形, 因此AB1⊥A1B. 又因?yàn)锳B1⊥B1C1,BC∥B1C1, 所以AB1⊥BC. 又因?yàn)锳1B∩BC=B,A1B?平面A1BC,BC?平面A1BC,所以AB1⊥平面A1BC. 因?yàn)锳B1?平面ABB1A1, 所以平面ABB1A1⊥平面A1BC. 2.(1)證明 延長AD,BE,CF相交于一點(diǎn)K,如圖所示. 因?yàn)槠矫鍮CFE⊥平面ABC,且AC⊥BC, 所以AC⊥平面BCK, 因此BF

6、⊥AC. 又因?yàn)镋F∥BC,BE=EF=FC=1,BC=2, 所以△BCK為等邊三角形,且F為CK的中點(diǎn),則BF⊥CK. 所以BF⊥平面ACFD. (2)解 因?yàn)锽F⊥平面ACK, 所以∠BDF是直線BD與平面ACFD所成的角. 在Rt△BFD中,BF=,DF=, 得cos∠BDF=, 所以,直線BD與平面ACFD所成角的余弦值為. 3.證明 (1)取B1D1的中點(diǎn)O1,連接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四邊形A1OCO1為平行四邊形,所以A1O∥O1C. 又O1C?平面B1CD1,A1O?平面B1CD

7、1,所以A1O∥平面B1CD1. (2)因?yàn)锳C⊥BD,E,M分別為AD和OD的中點(diǎn),所以EM⊥BD, 又A1E⊥平面ABCD,BD?平面ABCD, 所以A1E⊥BD,因?yàn)锽1D1∥BD, 所以EM⊥B1D1,A1E⊥B1D1. 又A1E,EM?平面A1EM,A1E∩EM=E, 所以B1D1⊥平面A1EM, 又B1D1?平面B1CD1, 所以平面A1EM⊥平面B1CD1. 4.(1)證明 在△ABD中,因?yàn)锳D=4,BD=8,AB=4, 所以AD2+BD2=AB2.所以AD⊥BD. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD?平面ABCD, 所以B

8、D⊥平面PAD.又BD?平面MBD, 故平面MBD⊥平面PAD. (2)解 過點(diǎn)P作PO⊥AD交AD于點(diǎn)O, 因?yàn)槠矫鍼AD⊥平面ABCD, 所以PO⊥平面ABCD,所以PO為四棱錐P-ABCD的高. 又△PAD是邊長為4的等邊三角形,因此PO=×4=2. 在底面四邊形ABCD中,AB∥DC,AB=2DC, 所以四邊形ABCD是梯形.在Rt△ADB中,斜邊AB邊上的高為, 此即為梯形ABCD的高,所以四邊形ABCD的面積為S==24. 故VP-ABCD=×24×2=16. 5.(1)證明 ∵PO⊥平面ABCD,且AD?平面ABCD,∴PO⊥AD. ∵∠ADC=45°,

9、且AD=AC=2,∴∠ACD=45°,∴∠DAC=90°,∴AD⊥AC. ∵AC?平面PAC,PO?平面PAC,且AC∩PO=O, ∴AD⊥平面PAC. (2)解 取DO的中點(diǎn)N,連接MN,AN, 由PO⊥平面ABCD,得MN⊥平面ABCD, ∴∠MAN是直線AM與平面ABCD所成的角. ∵M(jìn)為PD的中點(diǎn),∴MN∥PO,且MN=PO=3,AN=DO=. 在Rt△ANM中,tan∠MAN=, 即直線AM與平面ABCD所成角的正切值為. 6.證明 (1)∵PA=PD,且E為AD的中點(diǎn), ∴PE⊥AD. ∵底面ABCD為矩形,∴BC∥AD, ∴PE⊥BC. (2)∵底面

10、ABCD為矩形,∴AB⊥AD. ∵平面PAD⊥平面ABCD, ∴AB⊥平面PAD. ∴AB⊥PD.又PA⊥PD,PA∩AB=A, ∴PD⊥平面PAB.∵PD?平面PCD, ∴平面PAB⊥平面PCD. (3)如圖,取PC的中點(diǎn)G,連接FG,GD. ∵F,G分別為PB和PC的中點(diǎn),∴FG∥BC,且FG=BC. ∵四邊形ABCD為矩形,且E為AD的中點(diǎn), ∴ED∥BC,ED=BC, ∴ED∥FG,且ED=FG,∴四邊形EFGD為平行四邊形, ∴EF∥GD. 又EF?平面PCD,GD?平面PCD, ∴EF∥平面PCD. 7.(1)證明 連接BE,GH,AC,在△AED'

11、中, ED'2=AE2+AD'2,可得AD'⊥AE.又DC==2, AC=2,可得AC2+AD'2=CD'2,可得AD'⊥AC. 因?yàn)锳E∩AC=A,所以AD'⊥平面ABCE,所以AD'⊥BE. 又G,H分別為D'B,D'E的中點(diǎn),所以GH∥BE,所以GH⊥D'A. (2)解 設(shè)三棱錐C-D'BE的體積為V, 則V=S△BCE·AD'=×2×2×2. 8.(1)證明 如圖,取AB的中點(diǎn)E,連接DE,SE,則四邊形BCDE為矩形, ∴DE=CB=2, ∴AD=. ∵側(cè)面SAB為等邊三角形,AB=2, ∴SA=SB=AB=2,且SE=. 又SD=1, ∴SA2+SD2=AD2,SB2+SD2=BD2, ∴SD⊥SA,SD⊥SB. ∵SA∩SB=S,∴SD⊥平面SAB. (2)解 設(shè)四棱錐S-ABCD的高為h,則h也是三棱錐S-ABD的高. 由(1)知,SD⊥平面SAB,由VS-ABD=VD-SAB,得S△ABD·h=S△SAB·SD. 又S△ABD=AB·DE=×2×2=2,S△SAB=AB2=×22=,SD=1, 所以h=. 故四棱錐S-ABCD的高為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!