欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4

上傳人:彩*** 文檔編號:105926446 上傳時間:2022-06-13 格式:DOC 頁數(shù):5 大小:293KB
收藏 版權(quán)申訴 舉報 下載
(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4_第1頁
第1頁 / 共5頁
(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4_第2頁
第2頁 / 共5頁
(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 4.3.2 平面直角坐標(biāo)系中的伸縮變換學(xué)案 蘇教版選修4-4(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 4.3.2 平面直角坐標(biāo)系中的伸縮變換 1.了解平面直角坐標(biāo)系中的伸縮變換,能運(yùn)用伸縮變化進(jìn)行簡單的變換. 2.體會平面直角坐標(biāo)系中的伸縮變換給圖形帶來的變化. [基礎(chǔ)·初探] 1.橫坐標(biāo)的伸縮變換 一般地,由(k>0)所確定的伸縮變換,是按伸縮系數(shù)為k向著y軸的伸縮變換(當(dāng)k>1時,表示伸長;當(dāng)0<k<1時,表示壓縮),即曲線上所有點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼膋倍(這里(x,y)是變換前的點,(x′,y′)是變換后的點). 2.縱坐標(biāo)的伸縮變換 一般地,由(k>0)所確定的伸縮變換,是按伸縮系數(shù)為k向著x軸的伸縮變換(當(dāng)k>1時,表示伸長;當(dāng)0<k<1時,表

2、示壓縮),即曲線上所有點的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼膋倍(這里(x,y)是變換前的點,(x′,y′)是變換后的點). 3.伸縮變換 一般地,設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換φ:的作用下,點P(x,y)對應(yīng)到點P′(x′,y′),稱φ為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱為伸縮變換. [思考·探究] 1.如果x軸的單位長度保持不變,y軸的單位長度縮小為原來的,圓x2+y2=4的圖形變?yōu)槭裁磮D形?伸縮變換可以改變圖形的形狀嗎?那平移變換呢? 【提示】 x2+y2=4的圖形變?yōu)闄E圓:+y2=1. 伸縮變換可以改變圖形的形狀,但平移變換僅改變位置,不改變它的形狀.

3、2.如何理解平面直角坐標(biāo)系中的伸縮變換? 【提示】 在平面直角坐標(biāo)系中進(jìn)行伸縮變換,即改變x軸或y軸的單位長度,將會對圖形產(chǎn)生影響.其特點是坐標(biāo)系和圖形發(fā)生了改變,而圖形對應(yīng)的方程不發(fā)生變化.如在下列平面直角坐標(biāo)系中,分別作出f(x,y)=0的圖形:(1)x軸與y軸具有相同的單位長度;(2)x軸上的單位長度為y軸上單位長度的k倍;(3)x軸上的單位長度為y軸上單位長度的.第(1)種坐標(biāo)系中的意思是x軸與y軸上的單位長度一樣,f(x,y)=0的圖形就是我們以前學(xué)過的平面直角坐標(biāo)系中的f(x,y)=0的圖形;第(2)種坐標(biāo)系中的意思是如果x軸上的單位長度保持不變,y軸上的單位長度縮小為原來的,此

4、時f(x,y)=0表示的圖形與第(1)種坐標(biāo)系中的圖形是不同的;第(3)種坐標(biāo)系中的意思是如果y軸上的單位長度保持不變,x軸上的單位長度縮小為原來的,此時f(x,y)=0表示的圖形與第(1)種坐標(biāo)系中的圖形是不同的. [質(zhì)疑·手記] 預(yù)習(xí)完成后,請將你的疑問記錄,并與“小伙伴們”探討交流: 疑問1:_____________________________________________________ 解惑:_____________________________________________________ 疑問2:______________________________

5、_______________________ 解惑:_____________________________________________________ 疑問3:_____________________________________________________ 解惑:_____________________________________________________ 伸縮變換  對下列曲線進(jìn)行伸縮變換(k≠0,且k≠1). (1)y=kx+b; (2)(x-a)2+(y-b)2=r2. 【自主解答】 設(shè)P(x,y)是變換前的點,P′(x′,y′)是

6、變換后的點,由題意,得即 (1)由y′=k(x′)+b,y′=kx′+kb,得直線y=kx+b經(jīng)過伸縮變換后的方程為y=kx+kb,仍然是一條直線. 當(dāng)b=0時,該直線和原直線重合;當(dāng)b≠0時,該直線和原直線平行. (2)由(x′-a)2+(y′-b)2=r2,(x′-ka)2+(y′-kb)2=(kr)2,得圓(x-a)2+(y-b)2=r2經(jīng)過伸縮變換后的方程為(x-ka)2+(y-kb)2=(kr)2,它是一個圓心為(ka,kb),半徑為|kr|的圓. [再練一題] 1.在同一平面直角坐標(biāo)系中,將直線x-2y=2變成直線2x′-y′=4,求滿足圖象變換的伸縮變換. 【解】 設(shè)

7、變換為, 代入直線方程2x′-y′=4 得:2λx-μy=4,即λx-y=2, 比較系數(shù)得: λ=1,μ=4, 即直線x-2y=2圖象上所有點的橫坐標(biāo)不變,縱坐標(biāo)擴(kuò)大到原來的4倍可得到直線2x′-y′=4. 伸縮變換的應(yīng)用  曲線y=2sin 3x變換成曲線y=3sin 2x,求它的一個伸縮變換. 【導(dǎo)學(xué)號:98990021】 【思路探究】 設(shè)代入y′=3sin 2x′,所得式再與y=2sin 3x比較即可求λ、μ. 【自主解答】 將變換后的曲線y=3sin 2x改成y′=3sin 2x′. 設(shè)伸縮變換代入y′=3sin 2x′; 得μy=3sin(2λx) 即y

8、=sin(2λx),與y=2sin 3x比較系數(shù), 得即 所以伸縮變換為 確定一個伸縮變換,實際上就是求其變換方法,將新舊坐標(biāo)分清,代入對應(yīng)的曲線方程,然后比較系數(shù)即可. [再練一題] 2.(1)圓x2+y2=a2經(jīng)過什么樣的伸縮變換,可以使方程變?yōu)椋?(0<b<a)? (2)分析圓x2+y2=a2的一條弦所在直線和經(jīng)過該弦中點的直徑所在直線經(jīng)過上述伸縮變換后的位置關(guān)系. 【解】 (1)橢圓+=1可以化為x2+=a2, 設(shè)即 所以圓x2+y2=a2經(jīng)過向著x軸方向上的伸縮變換,伸縮系數(shù)k=,可以使方程變?yōu)椋?. (2)若圓x2+y2=a2的一條弦所在直線的斜率存

9、在且不為0,設(shè)其方程為y=kx+m,根據(jù)垂徑定理,經(jīng)過該弦中點的直徑所在直線的方程為y=-x. 由y′=kx′+m,得y′=x′+m.所以直線y=kx+m經(jīng)過變換,方程可變?yōu)閥=x+m. 由y′=-x′,得y′=-x′,所以直線y=-x經(jīng)過變換,方程可變?yōu)閥=-x. 此時,兩條直線的斜率乘積是定值-. 若圓x2+y2=a2的弦所在直線的方程為x=n,則經(jīng)過其中點的直徑所在直線的方程為y=0,伸縮變換后其方程分別變?yōu)閤=n,y=0.此時兩直線依然垂直. 若圓x2+y2=a2的弦所在直線的方程為y=n,則經(jīng)過其中點的直徑所在直線的方程為x=0,伸縮變換后其方程分別變?yōu)閥=n,x=0.此時

10、兩直線依然垂直. [真題鏈接賞析]  (教材第41頁習(xí)題4.3第8題)對下列曲線向著x軸進(jìn)行伸縮變換,伸縮系數(shù)k=2: (1)x2-4y2=16;(2)x2+y2-4x+2y+1=0.  求滿足下列圖形變換的伸縮變換:由曲線x2+y2=1變成曲線+=1. 【命題意圖】 本題主要考查平面直角坐標(biāo)系中的伸縮變換. 【解】 設(shè)變換為代入方程+=1,得+=1.與x2+y2=1比較,將其變形為x2+y2=1,比較系數(shù)得λ=3,μ=2. ∴即將圓x2+y2=1上所有點橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)變?yōu)樵瓉淼?倍,可得橢圓+=1. 1.直線x+4y-6=0按伸縮系數(shù)向著x軸的伸縮變換后,直

11、線的方程是________. 【答案】 x+8y-6=0 2.直線2x-3y=0按伸縮系數(shù)3向著y軸的伸縮變換后,直線的方程是________. 【答案】 2x-9y=0 3.曲線x2+y2=4按伸縮系數(shù)2向著y軸的伸縮變換后,曲線的方程是________. 【導(dǎo)學(xué)號:98990022】 【答案】?。? 4.y=cos x經(jīng)過伸縮變換后,曲線方程變?yōu)開_____. 【解析】 由,得,代入y=cos x, 得y′=cos x′, 即y′=3cos x′. 【答案】 y=3cos 我還有這些不足: (1)_____________________________________________________ (2)_____________________________________________________ 我的課下提升方案: (1)_____________________________________________________ (2)_____________________________________________________ 5

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!