欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文

上傳人:xt****7 文檔編號:106080410 上傳時(shí)間:2022-06-13 格式:DOC 頁數(shù):14 大?。?30KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文_第1頁
第1頁 / 共14頁
2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文_第2頁
第2頁 / 共14頁
2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022高考數(shù)學(xué)“一本”培養(yǎng)專題突破 第2部分 專題1 三角函數(shù)、解三角形 第1講 三角函數(shù)的圖象與性質(zhì)學(xué)案 文 熱點(diǎn)題型 真題統(tǒng)計(jì) 命題規(guī)律 題型1:三角恒等變換 2018全國卷ⅢT4;2018全國卷ⅠT11;2018全國卷ⅡT15 2017全國卷ⅢT4;2017全國卷ⅠT15 1.重點(diǎn)考查三角函數(shù)圖象的變換,三角函數(shù)的單調(diào)性、奇偶性、周期性、對稱性及最值,并常與三角恒等變換交匯命題. 題型2:三角函數(shù)的圖象與解析式 2016全國卷ⅠT6;2016全國卷ⅡT3;2016全國卷ⅢT14 2015全國卷ⅠT8 題型3:三角函數(shù)的性質(zhì)及應(yīng)用 2018全國卷ⅠT8;2018全

2、國卷ⅡT10;2018全國卷ⅢT6 2017全國卷ⅡT3;2017全國卷ⅡT13;2017全國卷ⅢT6 2016全國卷ⅡT11;2014全國卷ⅡT14 2.主要以選擇、填空題的形式考查,難度中等偏下. 1.兩角和與差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β; (3)tan(α±β)=. 2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α; (2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3)t

3、an 2α=. 3.輔助角公式 asin x+bcos x=sin(x+φ). ■高考考法示例· 【例1】 (1)(2018·全國卷Ⅰ)已知角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊上有兩點(diǎn)A(1,a),B(2,b),且cos 2α=,則|a-b|=(  ) A.   B.   C.   D.1 (2)(2018·洛陽模擬)若sin=,則cos+2α=________. (3)(2018·石家莊模擬)若cos(2α-β)=-,sin(α-2β)=,0<β<<α<,則α+β的值為________. (1)B (2)- (3) [(1)由題可知tan α==b-a,又

4、cos 2α=cos2α-sin2α====,∴5(b-a)2=1,得(b-a)2=,即|b-a|=,故選B. (2)由sin= 得cos=1-2sin2 =1-2×2=, 則cos=cos =-cos=-. (3)因?yàn)閏os(2α-β)=-且<2α-β<π, 所以sin(2α-β)=. 因?yàn)閟in(α-2β)=且-<α-2β<, 所以cos(α-2β)=. 所以cos(α+β)=cos[(2α-β)-(α-2β)] =cos(2α-β)·cos(α-2β)+sin(2α-β)sin(α-2β) =-×+×=. 因?yàn)椋鸡粒拢?,所以α+β? [方法歸納] 1.三

5、角恒等變換的“4大策略” (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等. (2)項(xiàng)的拆分與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次與升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦. 2.解決條件求值問題的關(guān)注點(diǎn) (1)分析已知角和未知角之間的關(guān)系,正確地用已知角來表示未知角. (2)正確地運(yùn)用有關(guān)公式將所求角的三角函數(shù)值用已知角的三角函數(shù)值來表示. (3)求解三角函數(shù)中的給值求角問題時(shí),要根據(jù)已知求這個(gè)角的某種三角函數(shù)值,然后結(jié)合角的取值范

6、圍,求出角的大?。? (教師備選) (2018·佛山模擬)已知tan=,則cos2-α=(  ) A. B. C. D. B [tan==,解得tan α=-,故cos2= ==+sin αcos α, 其中sin αcos α===-,故+sin αcos α=.] ■對點(diǎn)即時(shí)訓(xùn)練· 1.(2018·黃山模擬)若cos=,則sin 2α=(  ) A.   B.   C.-   D.- D [由cos=得,sin 2α=cos=2cos2-1=2×-1=-,故選D.] 2.已知sin α=,sin(α-β)=-,α,β均為銳角,則角β等于(  ) A.

7、B. C. D. C [由sin α=,α是銳角知cos α=, 由sin(α-β)=-,α,β均為銳角知,-<α-β<0, 從而cos(α-β)=. 故cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×= 所以β=] 3.(2018·全國卷Ⅱ)已知tan=,則tan α=________.  [法一:因?yàn)閠an =, 所以=,即=, 解得tan α=. 法二:因?yàn)閠an=, 所以tan α=tan+ 題型2 三角函數(shù)的圖象與解析式 ■核心知識儲備· 1.“五點(diǎn)法”作圖 用五點(diǎn)法畫y=Asin(ωx

8、+φ)在一個(gè)周期內(nèi)的簡圖時(shí),一般先列表,后描點(diǎn),連線,其中所列表如下: ωx+φ 0 π 2π x - -+ - Asin(ωx+φ) 0 A 0 -A 0 2.圖象變換 ■高考考法示例· 【例2】 (1)(2018·合肥模擬)函數(shù)y=sin的圖象可由函數(shù)y=cosx的圖象至少向右平移m(m>0)個(gè)單位長度得到,則m=(  ) A.1    B.    C.    D. (2)(2015·全國卷Ⅰ)函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖2-1-1所示,則f(x)的單調(diào)遞減區(qū)間為(  ) 圖2-1-1 A.,k∈Z B.

9、,k∈Z C.,k∈Z D.,k∈Z (1)A (2)D [(1)因?yàn)閥=sin =cos =cos, 所以只需將函數(shù)y=cosx的圖象向右至少平移1個(gè)單位長度即可得到函數(shù)y=sin的圖象. (2)由圖象知,周期T=2=2, ∴=2,∴ω=π. 由π×+φ=+2kπ,k∈Z,不妨取φ=, ∴f(x)=cos. 由2kπ<πx+<2kπ+π,得2k-

10、將y=sin ωx(ω>0)的圖象變換成y=sin(ωx+φ)的圖象時(shí),只需進(jìn)行平移變換,應(yīng)把ωx+φ變換成ω,根據(jù)確定平移量的大小,根據(jù)的符號確定平移的方向. 2.函數(shù)y=Asin(ωx+φ)的解析式的確定方法 (1)A由最值確定,A=; (2)ω由周期確定; (3)φ由圖象上的特殊點(diǎn)確定. 通常利用峰點(diǎn)、谷點(diǎn)或零點(diǎn)列出關(guān)于φ的方程,結(jié)合φ的范圍解得φ的值,所列方程如下: 峰點(diǎn):ωx+φ=+2kπ;谷點(diǎn):ωx+φ=-+2kπ,利用零點(diǎn)時(shí),要區(qū)分該零點(diǎn)是升零點(diǎn),還是降零點(diǎn). 升零點(diǎn)(圖象上升時(shí)與x軸的交點(diǎn)):ωx+φ=2kπ; 降零點(diǎn)(圖象下降時(shí)與x軸的交點(diǎn)):ωx+φ=π+2

11、kπ.(以上k∈Z) ■對點(diǎn)即時(shí)訓(xùn)練· 1.為了得到函數(shù)y=sin的圖象,可以將函數(shù)y=cos 2x的圖象(  ) A.向右平移個(gè)單位長度 B.向右平移個(gè)單位長度 C.向左平移個(gè)單位長度 D.向左平移個(gè)單位長度 B [∵y=cos 2x=sin, ∴y=cos 2x的圖象向右平移個(gè)單位長度, 得y=sin=sin的圖象,故選B.] 2.函數(shù)f(x)=Asin ωx(A>0,ω>0)的部分圖象如圖2-1-2所示,則f(1)+f(2)+f(3)+…+f(2 019)的值為(  ) 圖2-1-2 A.0    B.2+2    C.6    D.- B [由題圖可得,A

12、=2,T=8,=8,ω=, ∴f(x)=2sinx. ∴f(1)=,f(2)=2,f(3)=,f(4)=0,f(5)=-,f(6)=-2,f(7)=-,f(8)=0,而2 019=8×252+3,∴f(1)+f(2)+…+f(2 019)=f(1)+f(2)+f(3)=2+2.] 題型3 三角函數(shù)的性質(zhì)及應(yīng)用 ■核心知識儲備· 1.三角函數(shù)的奇偶性、對稱性 (1)y=Asin(ωx+φ),當(dāng)φ=kπ(k∈Z)時(shí)為奇函數(shù);當(dāng)φ=kπ+(k∈Z)時(shí)為偶函數(shù);對稱軸方程可由ωx+φ=kπ+(k∈Z)求得,對稱點(diǎn)、橫坐標(biāo)可由ωx+φ=kπ(k∈Z)求得. (2)y=Acos(ωx+φ),

13、當(dāng)φ=kπ+(k∈Z)時(shí)為奇函數(shù);當(dāng)φ=kπ(k∈Z)時(shí)為偶函數(shù);對稱軸方程可由ωx+φ=kπ(k∈Z)求得,對稱點(diǎn)、橫坐標(biāo)可由ωx+φ=kπ+(k∈Z)求得. (3)y=Atan(ωx+φ),當(dāng)φ=kπ(k∈Z)時(shí)為奇函數(shù). 尤其注意其對稱點(diǎn)橫坐標(biāo)可由ωx+φ=(k∈Z)求得. 2.三角函數(shù)的最值 函數(shù)類型 求解方法 y=asin x+bcos x+c 轉(zhuǎn)化為y=sin(x+φ)+c的最值問題 y=asin2x+bsin xcos x+ccos2x 轉(zhuǎn)化為y=Asin 2x+Bcos 2x+C的最值問題 y=asin2x+bsin x+c 換元法轉(zhuǎn)化為二次函數(shù)的最值

14、問題 ■高考考法示例· ?角度一 三角函數(shù)的定義域、周期性及單調(diào)性的判斷 【例3-1】 (1)(2018·全國卷Ⅱ)若f(x)=cos x-sin x在[0,a]是減函數(shù),則a的最大值是(  ) A.   B.   C.   D.π C [法一:f(x)=cos x-sin x=cosx+.當(dāng)x∈[0,a]時(shí),x+∈,所以結(jié)合題意可知,a+≤π,即a≤,故所求a的最大值是.故選C. 法二:f′(x)=-sin x-cos x=-sin.于是,由題設(shè)得f′(x)≤0,即 sin≥0在區(qū)間[0,a]上恒成立.當(dāng)x∈[0,a]時(shí),x+∈,所以a+≤π,即a≤,故所求a的最大值是.故選

15、C.] (2)已知函數(shù)f(x)=4tan x·sin·cos-. ①求f(x)的定義域與最小正周期; ②討論f(x)在區(qū)間上的單調(diào)性. [解] ①f(x)的定義域?yàn)? f(x)=4tan xcos xcos-=4sin xcosx-- =4sin x- =2sin xcos x+2sin2x- =sin 2x+(1-cos 2x)- =sin 2x-cos 2x=2sin. 所以f(x)的最小正周期T==π. ②令z=2x-,則函數(shù)y=2sin z的單調(diào)遞增區(qū)間是,k∈Z. 由-+2kπ≤2x-≤+2kπ,得-+kπ≤x≤+kπ,k∈Z. 設(shè)A=,B= ,易知A∩B

16、=-,. 所以當(dāng)x∈時(shí),f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減. ?角度二 三角函數(shù)的最值問題 【例3-2】 (1)(2016·全國卷Ⅱ)函數(shù)f(x)=cos 2x+6cos的最大值為(  ) A.4 B.5 C.6 D.7 B [f(x)=1-2sin2x+6sin x=-22+,又sin x∈[-1,1],所以當(dāng)sin x=1時(shí),f(x)有最大值5,故選B.] (2)(2018·青島模擬)設(shè)函數(shù)f(x)=sin+sin,其中0<ω<3.已知f=0. ①求ω; ②將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)

17、單位,得到函數(shù)y=g(x)的圖象,求g(x)在上的最小值. [解] ①因?yàn)閒(x)=sin+sin, 所以f(x)=sin ωx-cos ωx-cos ωx=sin ωx-cos ωx ==sin. 由題設(shè)知f=0,所以-=kπ,k∈Z. 故ω=6k+2,k∈Z,又0<ω<3,所以ω=2. ②由①得f(x)=sin 所以g(x)=sin=sin. 因?yàn)閤∈,所以x-∈, 當(dāng)x-=-,即x=-時(shí),g(x)取得最小值-. ?角度三 三角函數(shù)圖象的對稱性 【例3-3】 (1)將函數(shù)y=cos x+sin x(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,所得到的圖象關(guān)于y軸對

18、稱,則m的最小值是(  ) A.    B.    C.    D. (2)將函數(shù)f(x)=cos 2x的圖象向右平移個(gè)單位后得到函數(shù)g(x)的圖象,則g(x)具有性質(zhì) A.最大值為1,圖象關(guān)于直線x=對稱 B.在上單調(diào)遞增,為奇函數(shù) C.在上單調(diào)遞增,為偶函數(shù) D.周期為π,圖象關(guān)于點(diǎn)對稱 (1)A (2)B [(1)設(shè)f(x)=cos x+sin x=2cos x+sin x=2sin,向左平移m個(gè)單位長度得g(x)=2sin.∵g(x)的圖象關(guān)于y軸對稱,∴g(x)為偶函數(shù),∴+m=+kπ(k∈Z), ∴m=+kπ(k∈Z),又m>0,∴m的最小值為. (2)由題意可得

19、將f(x)=cos 2x的圖象向右平移個(gè)單位得到g(x)=cos=cos=sin 2x的圖象,因?yàn)楹瘮?shù)g(x)為奇函數(shù),所以排除C,又當(dāng)x=時(shí)函數(shù)值為0,當(dāng)x=時(shí),函數(shù)值為,所以A和D中對稱的說法不正確,選B.] [方法歸納] 函數(shù)y=Asin(ωx+φ)的性質(zhì)及應(yīng)用的求解思路 第一步:先借助三角恒等變換及相應(yīng)三角函數(shù)公式把待求函數(shù)化成y=Asin(ωx+φ)+B的形式; 第二步:把“ωx+φ”視為一個(gè)整體,借助復(fù)合函數(shù)性質(zhì)求y=Asin(ωx+φ)+B的單調(diào)性及奇偶性、最值、對稱性等問題. ■對點(diǎn)即時(shí)訓(xùn)練· 1.(2018·全國卷Ⅲ)函數(shù)f(x)=的最小正周期為(  ) A.

20、    B.    C.π    D.2π C [f(x)==== sin xcos x=sin 2x,所以f(x)的最小正周期T==π.故選C.] 2.(2018·沈陽模擬)已知f(x)=2sin2x+2sin xcos x,則f(x)的最小正周期和一個(gè)單調(diào)遞減區(qū)間分別為(  ) A.2π, B.π, C.2π, D.π, B [f(x)=2sin2x+2sin xcos x=1-cos 2x+sin 2x=sin+1,則T==π.由+2kπ≤2x-≤+2kπ(k∈Z),得+kπ≤x≤+kπ(k∈Z),令k=0得f(x)在上單調(diào)遞減,故選B.] 3.(2018·哈爾濱模

21、擬)若函數(shù)f(x)=sin(2x+θ)+cos(2x+θ)(0<θ<π)的圖象關(guān)于中心對稱,則函數(shù)f(x)在上的最小值是(  ) A.-1 B.- C.- D.- B [f(x)=2sin,又圖象關(guān)于中心對稱,所以2×+θ+=kπ,k∈Z,所以θ=kπ-π,又0<θ<π,所以θ=, 所以f(x)=-2sin 2x, 因?yàn)閤∈. 所以2x∈,f(x)∈[-,2], 所以f(x)的最小值是-.] 1.(2014·全國卷Ⅰ)在函數(shù)①y=cos|2x|,②y=|cos x|,③y=cos2x+,④y=tan中,最小正周期為π的所有函數(shù)為(  ) A.②④       

22、 B.①③④ C.①②③ D.①③ C [①y=cos|2x|=cos 2x,T=π. ②由圖象知,函數(shù)的周期T=π. ③T=π. ④T=. 綜上可知,最小正周期為π的所有函數(shù)為①②③.] 2.(2016·全國卷Ⅰ)將函數(shù)y=2sin的圖象向右平移個(gè)周期后,所得圖象對應(yīng)的函數(shù)為(  ) A.y=2sin B.y=2sin C.y=2sin D.y=2sin D [函數(shù)y=2sin的周期為π,將函數(shù)y=2sin的圖象向右平移個(gè)周期即個(gè)單位長度,所得圖象對應(yīng)的函數(shù)為y=2sin=2sin,故選D.] 3.(2018·全國卷Ⅰ)已知函數(shù)f(x)=2cos2x

23、-sin2x+2,則(  ) A.f(x)的最小正周期為π,最大值為3 B.f(x)的最小正周期為π,最大值為4 C.f(x)的最小正周期為2π,最大值為3 D.f(x)的最小正周期為2π,最大值為4 B [易知f(x)=2cos2x-sin2x+2=3cos2x+1=(2cos2x-1)++1=cos 2x+,則f(x)的最小正周期為π,當(dāng)x=kπ(k∈Z)時(shí),f(x)取得最大值,最大值為4.] 4.(2016·全國卷Ⅲ)函數(shù)y=sin x-cos x的圖象可由函數(shù)y=2sin x的圖象至少向右平移________個(gè)單位長度得到.  [∵y=sin x-cos x=2sin,∴函數(shù)y=sin x-cos x的圖象可由函數(shù)y=2sin x的圖象至少向右平移個(gè)單位長度得到.] 5.(2016·全國卷Ⅰ)已知θ是第四象限角,且sin=,則tan=________. - [由題意知sin=,θ是第四象限角,所以cos>0,所以cos==. tan== =-=-=-.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!