《(京津專用)2022高考數(shù)學總復習 優(yōu)編增分練:中檔大題規(guī)范練(二)數(shù)列 文》由會員分享,可在線閱讀,更多相關《(京津專用)2022高考數(shù)學總復習 優(yōu)編增分練:中檔大題規(guī)范練(二)數(shù)列 文(4頁珍藏版)》請在裝配圖網上搜索。
1、(京津專用)2022高考數(shù)學總復習 優(yōu)編增分練:中檔大題規(guī)范練(二)數(shù)列 文
1.(2018·濰坊模擬)已知數(shù)列{an}的前n項和為Sn,且1,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足an·bn=1+2nan,求數(shù)列{bn}的前n項和Tn.
解 (1)由已知1,an,Sn成等差數(shù)列,得2an=1+Sn,①
當n=1時,2a1=1+S1=1+a1,∴a1=1.
當n≥2時,2an-1=1+Sn-1,②
①-②得2an-2an-1=an,
∴=2,
∴數(shù)列{an}是以1為首項,2為公比的等比數(shù)列,
∴an=a1qn-1=1×2n-1=2
2、n-1(n∈N*).
(2)由an·bn=1+2nan,得bn=+2n,
∴Tn=b1+b2+…+bn
=+2++4+…++2n
=+(2+4+…+2n)
=+=n2+n+2-(n∈N*).
2.(2018·四川成都市第七中學三診)已知公差不為零的等差數(shù)列{an}中,a3=7,且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{an·2n}的前n項和為Sn,求Sn.
解 (1)設等差數(shù)列{an} 的公差為d(d≠0),
則a3=a1+2d=7.
又∵a1,a4,a13成等比數(shù)列,
∴a=a1a13,即(a1+3d)2=a1(a1+12d),
3、
整理得2a1=3d
∵a1≠0,
由解得
∴an=3+2(n-1)=2n+1(n∈N*).
(2)由(1)得an·2n=(2n+1)·2n,
∴Sn=3×2+5×22+…+(2n-1)·2n-1+(2n+1)·2n,①
∴2Sn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n+1,②
①-②得
-Sn=6+23+24+…+2n+1-(2n+1)·2n+1
=2+22+23+24+…+2n+1-(2n+1)·2n+1
=-(2n+1)·2n+1
=-2+(1-2n)·2n+1.
∴Sn=2+(2n-1)·2n+1(n∈N*).
3.(2018·廈門質
4、檢)已知等差數(shù)列{an}滿足(n+1)an=2n2+n+k,k∈R.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.
解 (1)方法一 由(n+1)an=2n2+n+k,
令n=1,2,3,
得到a1=,a2=,a3=,
∵{an}是等差數(shù)列,∴2a2=a1+a3,
即=+,
解得k=-1.
由于(n+1)an=2n2+n-1=(2n-1)(n+1),
又∵n+1≠0,∴an=2n-1(n∈N*).
方法二 ∵{an}是等差數(shù)列,設公差為d,
則an=a1+d(n-1)=dn+(a1-d),
∴(n+1)an=(n+1)(dn+a1-
5、d)
=dn2+a1n+a1-d,
∴dn2+a1n+a1-d=2n2+n+k對于?n∈N*均成立,
則解得k=-1,∴an=2n-1(n∈N*).
(2)由bn==
==1+
=1+=+1,
得Sn=b1+b2+b3+…+bn
=+1++1++1+…++1
=+n
=+n
=+n=(n∈N*).
4.(2018·安徽省江南十校模擬)數(shù)列{an}滿足a1+2a2+3a3+…+nan=2-.
(1)求數(shù)列{an}的通項公式;
(2)設bn=,求{bn}的前n項和Tn.
解 (1)當n=1時,a1=2-=;
當n≥2時,由a1+2a2+3a3+…+nan=2-,①
6、
a1+2a2+3a3+…+(n-1)an-1=2-,②
①-②得nan=2-- =,
可得an=,
又∵當n=1時也成立,∴an=(n∈N*).
(2)∵bn= =
=2,
∴Tn=2
=2=-(n∈N*).
5.(2018·宿州模擬)已知數(shù)列{an}的前n項和為Sn,數(shù)列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2.
(1)證明數(shù)列{an+2}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)設bn=n·an,求數(shù)列{bn}的前n項和Kn.
解 (1)由Tn=2Sn-n2,得a1=S1=T1=2S1-1,
解得a1=S1=1,
由S1+S2=2S2-4,解
7、得a2=4.
當n≥2時,Sn=Tn-Tn-1 =2Sn-n2-2Sn-1+(n-1)2,
即Sn=2Sn-1+2n-1,①
Sn+1=2Sn+2n+1,②
由②-①得an+1=2an+2,
∴an+1+2=2(an+2),
又a2+2=2(a1+2),
∴數(shù)列{an+2}是以a1+2=3為首項,2為公比的等比數(shù)列,
∴an+2=3·2n-1,
即an=3·2n-1-2(n∈N*).
(2)∵bn=3n·2n-1-2n,
∴Kn=3(1·20+2·21+…+n·2n-1)-2(1+2+…+n)
=3(1·20+2·21+…+n·2n-1)-n2-n.
記Rn=1·20+2·21+…+n·2n-1,③
2Rn=1·21+2·22+…+(n-1)·2n-1+n·2n,④
由③-④,得
-Rn=20+21+22+…+2n-1-n·2n
=-n·2n =(1-n)·2n-1,
∴Rn=(n-1)·2n+1.
∴Kn=3(n-1)2n-n2-n+3(n∈N*).