欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版

上傳人:艷*** 文檔編號:110493878 上傳時間:2022-06-18 格式:DOC 頁數(shù):7 大?。?68.50KB
收藏 版權(quán)申訴 舉報 下載
【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版_第1頁
第1頁 / 共7頁
【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版_第2頁
第2頁 / 共7頁
【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版》由會員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】2020年高考數(shù)學一輪復習 第七篇不等式 第1講 不等關(guān)系與不等式教案 理 新人教版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 不等關(guān)系與不等式 【2020年高考會這樣考】 結(jié)合命題真假判斷、充要條件、大小比較等知識考查不等式性質(zhì)的基本應(yīng)用. 【復習指導】 不等式的性質(zhì)是解(證)不等式的基礎(chǔ),關(guān)鍵是正確理解和運用,要弄清條件和結(jié)論,近幾年高考中多以小題出現(xiàn),題目難度不大,復習時,應(yīng)抓好基本概念,少做偏難題. 基礎(chǔ)梳理 1.不等式的定義 在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號>、<、≥、≤、≠連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式. 2.比較兩個實數(shù)的大小 兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-b>0?a>b;a-b

2、=0?a=b;a-b<0?a<b.另外,若b>0,則有>1?a>b;=1?a=b;<1?a<b. 3.不等式的性質(zhì) (1)對稱性:a>b?b<a; (2)傳遞性:a>b,b>c?a>c; (3)可加性:a>b?a+c>b+c,a>b,c>d?a+c>b+d; (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?ac>bd; (5)可乘方:a>b>0?an>bn(n∈N,n≥2); (6)可開方:a>b>0?>(n∈N,n≥2). 一個技巧 作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方. 一種方法 待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代

3、數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍. 兩條常用性質(zhì) (1)倒數(shù)性質(zhì): ①a>b,ab>0?<; ②a<0<b?<; ③a>b>0,0<c<d?>; ④0<a<x<b或a<x<b<0?<<. (2)若a>b>0,m>0,則 ①真分數(shù)的性質(zhì): <;>(b-m>0); ②假分數(shù)的性質(zhì): >;<(b-m>0). 雙基自測 1.(人教A版教材習題改編)給出下列命題:①a>b?ac2>bc2;②a>|b|?a2>b2;③a>b?a3>b3;④|a|>b?a2>b2.其中正確的命題是(  ). A.①② B.②③ C.③④

4、 D.①④ 解析 當c=0時,ac2=bc2,∴①不正確;a>|b|≥0,a2>|b|2=b2,∴②正確;a3-b3=(a-b)(a2+ab+b2)=(a-b)·>0,∴③正確;取a=2,b=-3,則|a|>b,但a2=4<b2=9,∴④不正確. 答案 B 2.限速40 km/h的路標,指示司機在前方路段行駛時,應(yīng)使汽車的速度v不超過40 km/h,寫成不等式就是(  ). A.v<40 km/h B.v>40 km/h C.v≠40 km/h D.v≤40 km/h 答案 D 3.(2020·銀川質(zhì)檢)已知a,b,c∈R,則“a>b”是“ac2>bc2”的(  )

5、. A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 解析 a>b /?ac2>bc2,∵當c2=0時,ac2=bc2;反之,ac2>bc2?a>b. 答案 B 4.已知a>b,c>d,且c,d不為0,那么下列不等式成立的是(  ). A.a(chǎn)d>bc B.a(chǎn)c>bd C.a(chǎn)-c>b-d D.a(chǎn)+c>b+d 解析 由不等式性質(zhì)知:a>b,c>d?a+c>b+d. 答案 D 5.與+1的大小關(guān)系為________. 解析?。?+1)=(+1)-(+1)=-<0, ∴<+1. 答案?。迹?   考向一 比較大小 【例1】

6、?已知a,b,c是實數(shù),試比較a2+b2+c2與ab+bc+ca的大?。? [審題視點] 采用作差法比較,作差后構(gòu)造完全平方式即可. 解 ∵a2+b2+c2-(ab+bc+ca)=[(a-b)2+(b-c)2+(c-a)2]≥0, 當且僅當a=b=c時取等號. ∴a2+b2+c2≥ab+bc+ca. 比較大小的方法常采用作差法與作商法,但題型為選擇題時可以用特殊值法來比較大?。? 【訓練1】 已知a,b∈R且a>b,則下列不等式中一定成立的是(  ). A.>1 B.a(chǎn)2>b2 C.lg(a-b)>0 D.a<b 解析 令a=2,b=-1,則a>b,=-2,故>1不成立,排

7、除A;令a=1,b=-2,則a2=1,b2=4,故a2>b2不成立,排除B;當a-b在區(qū)間(0,1)內(nèi)時,lg(a-b)<0,排除C;f(x)=x在R上是減函數(shù),∵a>b,∴f(a)<f(b). 答案 D 考向二 不等式的性質(zhì) 【例2】?(2020·包頭模擬)若a>0>b>-a,c<d<0,則下列命題:(1)ad>bc;(2)+<0;(3)a-c>b-d;(4)a·(d-c)>b(d-c)中能成立的個數(shù)是(  ). A.1 B.2 C.3 D.4 [審題視點] 利用不等式的性質(zhì)說明正誤或舉反例說明真假. 解析 ∵a>0>b,c<d<0,∴ad<0,bc

8、>0,∴ad<bc, ∴(1)錯誤. ∵a>0>b>-a,∴a>-b>0, ∵c<d<0,∴-c>-d>0, ∴a(-c)>(-b)(-d), ∴ac+bd<0,∴+=<0,∴(2)正確. ∵c<d,∴-c>-d,∵a>b,∴a+(-c)>b+(-d), a-c>b-d,∴(3)正確. ∵a>b,d-c>0,∴a(d-c)>b(d-c),∴(4)正確,故選C. 答案 C 在判斷一個關(guān)于不等式的命題真假時,先把要判斷的命題和不等式性質(zhì)聯(lián)系起來考慮,找到與命題相近的性質(zhì),并應(yīng)用性質(zhì)判斷命題真假,當然判斷的同時還要用到其他知識,比如對數(shù)函數(shù),指數(shù)函數(shù)的性質(zhì)等. 【訓練2】 已

9、知三個不等式:①ab>0;②bc>ad;③>.以其中兩個作為條件,余下一個作為結(jié)論,則可以組成正確命題的個數(shù)是(  ). A.0 B.1 C.2 D.3 解析 命題1:若ab>0,>,則bc>ad; 命題2:若ab>0,bc>ad,則>; 命題3:若>,bc>ad,則ab>0. 答案 D 考向三 不等式性質(zhì)的應(yīng)用 【例3】?已知函數(shù)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范圍. [審題視點] 可利用待定系數(shù)法尋找目標式f(-2)與已知式f(-1),f(1)之間的關(guān)系,即用f(-1),f(1)整體表示f(-2),再利用不等式的性質(zhì)求

10、f(-2)的范圍. 解 f(-1)=a-b,f(1)=a+b.f(-2)=4a-2b. 設(shè)m(a+b)+n(a-b)=4a-2b. ∴∴ ∴f(-2)=(a+b)+3(a-b)=f(1)+3f(-1). ∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤f(-2)≤10. 由a<f(x,y)<b,c<g(x,y)<d,求F(x,y)的取值范圍,可利用待定系數(shù)法解決,即設(shè)F(x,y)=mf(x,y)+ng(x,y),用恒等變形求得m,n,再利用不等式的性質(zhì)求得F(x,y)的取值范圍. 【訓練3】 若α,β滿足試求α+3β的取值范圍. 解 設(shè)α+3β=x(α+β)+y(α+2β)

11、=(x+y)α+(x+2y)β. 由解得 ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, ∴兩式相加,得1≤α+3β≤7. 考向四 利用不等式的性質(zhì)證明簡單不等式 【例4】?設(shè)a>b>c,求證:++>0. [審題視點] 充分運用已知條件及不等式性質(zhì)進行求證. 證明 ∵a>b>c,∴-c>-b. ∴a-c>a-b>0,∴>>0. ∴+>0.又b-c>0,∴>0. ++>0. (1)運用不等式性質(zhì)解決問題時,必須注意性質(zhì)成立的條件. (2)同向不等式的可加性與可乘性可推廣到兩個以上的不等式. 【訓練4】 若a>b>0,c<d<0,e<0, 求證:>. 證明 ∵c

12、<d<0,∴-c>-d>0. 又∵a>b>0,∴a-c>b-d>0. ∴(a-c)2>(b-d)2>0.∴0<<. 又∵e<0,∴>.   難點突破15——數(shù)式大小比較問題 數(shù)式大小的比較是高考中最常見的一種命題方式,涉及的知識點和問題求解的方法不僅局限于不等式知識,而且更多的關(guān)聯(lián)到函數(shù)、數(shù)列、三角函數(shù)、向量、解析幾何、導數(shù)等知識,內(nèi)容豐富多彩.命題的方式主要是選擇題、填空題,考查不等式性質(zhì)、函數(shù)性質(zhì)的應(yīng)用. 一、作差法 【示例】? (2020·陜西)設(shè)0<a<b,則下列不等式中正確的是(  ). A.a(chǎn)<b<< B.a(chǎn)<<<b C.a(chǎn)<<b< D.<a<<b 二、作商法 【示例】? 若0<x<1,a>0且a≠1,則|loga(1-x)|與|loga(1+x)|的大小關(guān)系是 (  ). A.|loga(1-x)|>|loga(1+x)| B.|loga(1-x)|<|loga(1+x)| C.不確定,由a的值決定 D.不確定,由x的值決定 三、中間量法 【示例】? 若a=20.6,b=logπ3,c=log2sin,則(  ). A.a(chǎn)>b>c B.b>a>c C.c>a>b D.b>c>a

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!