欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版

上傳人:艷*** 文檔編號:110495133 上傳時間:2022-06-18 格式:DOC 頁數(shù):8 大?。?78KB
收藏 版權(quán)申訴 舉報 下載
【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版_第1頁
第1頁 / 共8頁
【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版_第2頁
第2頁 / 共8頁
【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版》由會員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第六篇 數(shù)列 第5講 數(shù)列的綜合應(yīng)用教案 理 新人教版(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第5講 數(shù)列的綜合應(yīng)用 【2020年高考會這樣考】 1.考查數(shù)列的函數(shù)性及與方程、不等式、解析幾何相結(jié)合的數(shù)列綜合題. 2.考查運用數(shù)列知識解決數(shù)列綜合題及實際應(yīng)用題的能力. 【復(fù)習(xí)指導(dǎo)】 1.熟練把握等差數(shù)列與等比數(shù)列的基本運算. 2.掌握隱藏在數(shù)列概念和解題方法中的數(shù)學(xué)思想,如“函數(shù)與方程”、“數(shù)形結(jié)合”、“分類討論”、“等價轉(zhuǎn)化”等. 3.注意總結(jié)相關(guān)的數(shù)列模型以及建立模型的方法. 基礎(chǔ)梳理 1.等比數(shù)列與等差數(shù)列比較表 不同點 相同點 等差數(shù)列 (1)強調(diào)從第二項起每一項與前項的差; (2)a1和d可以為零; (3)等差中項唯一 (1)都強調(diào)從第

2、二項起每一項與前項的關(guān)系; (2)結(jié)果都必須是同一個常數(shù); (3)數(shù)列都可由a1,d或a1,q確定 等比數(shù)列 (1)強調(diào)從第二項起每一項與前項的比; (2)a1與q均不為零; (3)等比中項有兩個值 2.解答數(shù)列應(yīng)用題的步驟 (1)審題——仔細閱讀材料,認真理解題意. (2)建?!獙⒁阎獥l件翻譯成數(shù)學(xué)(數(shù)列)語言,將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,弄清該數(shù)列的特征、要求是什么. (3)求解——求出該問題的數(shù)學(xué)解. (4)還原——將所求結(jié)果還原到原實際問題中. 3.數(shù)列應(yīng)用題常見模型 (1)等差模型:如果增加(或減少)的量是一個固定量時,該模型是等差模型,增加(或減少)的量就

3、是公差. (2)等比模型:如果后一個量與前一個量的比是一個固定的數(shù)時,該模型是等比模型,這個固定的數(shù)就是公比. (3)遞推數(shù)列模型:如果題目中給出的前后兩項之間的關(guān)系不固定,隨項的變化而變化時,應(yīng)考慮是an與an+1的遞推關(guān)系,還是Sn與Sn+1之間的遞推關(guān)系. 一條主線 數(shù)列的滲透力很強,它和函數(shù)、方程、三角形、不等式等知識相互聯(lián)系,優(yōu)化組合,無形中加大了綜合的力度.解決此類題目,必須對蘊藏在數(shù)列概念和方法中的數(shù)學(xué)思想有所了解. 兩個提醒 (1)對等差、等比數(shù)列的概念、性質(zhì)要有深刻的理解,有些數(shù)列題目條件已指明是等差(或等比)數(shù)列,但有的數(shù)列并沒有指明,可以通過分析,轉(zhuǎn)化為

4、等差數(shù)列或等比數(shù)列,然后應(yīng)用等差、等比數(shù)列的相關(guān)知識解決問題. (2)數(shù)列是一種特殊的函數(shù),故數(shù)列有著許多函數(shù)的性質(zhì).等差數(shù)列和等比數(shù)列是兩種最基本、最常見的數(shù)列,它們是研究數(shù)列性質(zhì)的基礎(chǔ),它們與函數(shù)、方程、不等式、三角等內(nèi)容有著廣泛的聯(lián)系,等差數(shù)列和等比數(shù)列在實際生活中也有著廣泛的應(yīng)用,隨著高考對能力要求的進一步增加,這一部分內(nèi)容也將受到越來越多的關(guān)注. 三種思想 (1)數(shù)列與函數(shù)方程相結(jié)合時主要考查函數(shù)的思想及函數(shù)的性質(zhì)(多為單調(diào)性). (2)數(shù)列與不等式結(jié)合時需注意放縮. (3)數(shù)列與解析幾何結(jié)合時要注意遞推思想. 雙基自測 1.(人教A版教材習(xí)題改編)已知等差數(shù)列{an}

5、的公差為2,若a1,a3,a4成等比數(shù)列,則a2的值為(  ). A.-4 B.-6 C.-8 D.-10 解析 由題意知:a=a1a4.則(a2+2)2=(a2-2)(a2+4),解得:a2=-6. 答案 B 2.(2020·運城模擬)等比數(shù)列{an}的前n項和為Sn,若a1=1,且4a1,2a2,a3成等差數(shù)列,則S4=(  ). A.7 B.8 C.15 D.16 解析 設(shè)數(shù)列{an}的公比為q,則4a2=4a1+a3,∴4a1q=4a1+a1q2,即q2-4q+4=0,∴q=2.∴S4==15. 答案 C 3.

6、已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,數(shù)列{bn}是等差數(shù)列,且a6=b7,則有(  ). A.a(chǎn)3+a9≤b4+b10 B.a(chǎn)3+a9≥b4+b10 C.a(chǎn)3+a9≠b4+b10 D.a(chǎn)3+a9與b4+b10的大小關(guān)系不確定 解析 記等比數(shù)列{an}的公比為q(q>0),由數(shù)列{bn}為等差數(shù)列可知b4+b10=2b7,又數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,∴a3+a9=a3(1+q6)=a6=b7,又=+q3≥2(當且僅當q=1時,等號成立),∴a3+a9≥2b7,即a3+a9≥b4+b10. 答案 B 4.若互不相等的實數(shù)a,b,c成等差數(shù)列,c,a,b成等比數(shù)列,且

7、a+3b+c=10,則a=(  ). A.4 B.2 C.-2 D.-4 解析 由c,a,b成等比數(shù)列可將公比記為q,三個實數(shù)a,b,c,待定為cq,cq2,c.由實數(shù)a、b、c成等差數(shù)列得2b=a+c,即2cq2=cq+c,又等比數(shù)列中c≠0,所以2q2-q-1=0,解一元二次方程得q=1(舍去,否則三個實數(shù)相等)或q=-,又a+3b+c=a+3aq+=-a=10,所以a=-4. 答案 D 5.(2020·蘇州質(zhì)檢)已知等差數(shù)列的公差d<0,前n項和記為Sn,滿足S20>0,S21<0,則當n=________時,Sn達到最大值. 解析 ∵S20=10

8、(a1+a20)=10(a10+a11)>0, S21=21a11<0,∴a10>0,a11<0, ∴n=10時,Sn最大. 答案 10   考向一 等差數(shù)列與等比數(shù)列的綜合應(yīng)用 【例1】?在等差數(shù)列{an}中,a10=30,a20=50. (1)求數(shù)列{an}的通項an; (2)令bn=2an-10,證明:數(shù)列{bn}為等比數(shù)列. [審題視點] 第(1)問列首項a1與公差d的方程組求an;第(2)問利用定義證明. (1)解 由an=a1+(n-1)d,a10=30, a20=50,得方程組 解得∴an=12+(n-1)·2=2n+10. (2)證明 由(1),得bn=

9、2an-10=22n+10-10=22n=4n, ∴==4. ∴{bn}是首項是4,公比q=4的等比數(shù)列. 對等差、等比數(shù)列的綜合問題的分析,應(yīng)重點分析等差、等比數(shù)列的通項及前n項和;分析等差、等比數(shù)列項之間的關(guān)系.往往用到轉(zhuǎn)化與化歸的思想方法. 【訓(xùn)練1】 數(shù)列{an}的前n項和記為Sn,a1=1,an+1=2Sn+1(n≥1). (1)求{an}的通項公式; (2)等差數(shù)列{bn}的各項為正,其前n項和為Tn,且T3=15, 又a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn. 解 (1)由an+1=2Sn+1,可得an=2Sn-1+1(n≥2), 兩式相減得an+

10、1-an=2an,則an+1=3an(n≥2). 又a2=2S1+1=3,∴a2=3a1. 故{an}是首項為1,公比為3的等比數(shù)列,∴an=3n-1. (2)設(shè){bn}的公差為d, 由T3=15,b1+b2+b3=15,可得b2=5, 故可設(shè)b1=5-d,b3=5+d,又a1=1,a2=3,a3=9, 由題意可得(5-d+1)(5+d+9)=(5+3)2, 解得d1=2,d2=-10. ∵等差數(shù)列{bn}的各項為正,∴d>0, ∴d=2,b1=3,∴Tn=3n+×2=n2+2n. 考向二 數(shù)列與函數(shù)的綜合應(yīng)用 【例2】?(2020·南昌模擬)等比數(shù)列{an}的前n項和為

11、Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上. (1)求r的值; (2)當b=2時,記bn=(n∈N*),求數(shù)列{bn}的前n項和Tn. [審題視點] 第(1)問將點(n,Sn)代入函數(shù)解析式,利用an=Sn-Sn-1(n≥2),得到an,再利用a1=S1可求r. 第(2)問錯位相減求和. 解 (1)由題意,Sn=bn+r,當n≥2時,Sn-1=bn-1+r,所以an=Sn-Sn-1=bn-1·(b-1), 由于b>0且b≠1,所以n≥2時,{an}是以b為公比的等比數(shù)列,又a1=b+r,a2=b(b-1),=b,即=b,

12、 解得r=-1. (2)由(1)知,n∈N*,an=(b-1)bn-1=2n-1,所以bn==. Tn=+++…+, Tn=++…++, 兩式相減得Tn=+++…+- =--, ∴Tn=--=-. 此類問題常常以函數(shù)的解析式為載體,轉(zhuǎn)化為數(shù)列問題,常用的數(shù)學(xué)思想方法有“函數(shù)與方程”“等價轉(zhuǎn)化”等. 【訓(xùn)練2】 (2020·福建)已知等比數(shù)列{an}的公比q=3,前3項和S3=. (1)求數(shù)列{an}的通項公式; (2)若函數(shù)f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=處取得最大值,且最大值為a3,求函數(shù)f(x)的解析式. 解 (1)由q=3,S3=得=,

13、解得a1=. 所以an=×3n-1=3n-2. (2)由(1)可知an=3n-2,所以a3=3. 因為函數(shù)f(x)的最大值為3,所以A=3; 因為當x=時f(x)取得最大值, 所以sin=1. 又0<φ<π,故φ=. 所以函數(shù)f(x)的解析式為f(x)=3sin. 考向三 數(shù)列與不等式的綜合應(yīng)用 【例3】?(2020·惠州模擬)在等比數(shù)列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3與a5的等比中項為2. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=log2an,求數(shù)列{bn}的前n項和Sn; (3)是否存在k∈

14、N*,使得++…+<k對任意n∈N*恒成立,若存在,求出k的最小值,若不存在,請說明理由. [審題視點] 第(1)問由等比數(shù)列的性質(zhì)轉(zhuǎn)化為a3+a5與a3a5的關(guān)系求a3與a5;進而求an;第(2)問先判斷數(shù)列{bn},再由求和公式求Sn;第(3)問由確定正負項,進而求++…+的最大值,從而確定k的最小值. 解 (1)∵a1a5+2a3a5+a2a8=25, ∴a+2a3a5+a=25,∴(a3+a5)2=25, 又an>0,∴a3+a5=5,又a3與a5的等比中項為2, ∴a3a5=4,而q∈(0,1), ∴a3>a5,∴a3=4,a5=1,∴q=,a1=16, ∴an=16×

15、n-1=25-n. (2)∵bn=log2an=5-n, ∴bn+1-bn=-1, b1=log2a1=log216=log224=4, ∴{bn}是以b1=4為首項,-1為公差的等差數(shù)列, ∴Sn=. (3)由(2)知Sn=,∴=. 當n≤8時,>0;當n=9時,=0; 當n>9時,<0. ∴當n=8或9時,+++…+=18最大. 故存在k∈N*,使得++…+<k對任意n∈N*恒成立,k的最小值為19. 解決此類問題要抓住一個中心——函數(shù),兩個密切聯(lián)系:一是數(shù)列和函數(shù)之間的密切聯(lián)系,數(shù)列的通項公式是數(shù)列問題的核心,函數(shù)的解析式是研究函數(shù)問題的基礎(chǔ);二是方程、不等式與函

16、數(shù)的聯(lián)系,利用它們之間的對應(yīng)關(guān)系進行靈活的處理. 【訓(xùn)練3】 (2020·岳陽模擬)已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項. (1)求數(shù)列{an}的通項公式; (2)若bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整數(shù)n的最小值. (1)解 設(shè)等比數(shù)列{an}的首項為a1,公比為q. 依題意,有2(a3+2)=a2+a4,代入a2+a3+a4=28, 可得a3=8,∴a2+a4=20, 所以解之得或 又∵數(shù)列{an}單調(diào)遞增,所以q=2,a1=2, ∴數(shù)列{an}的通項公式為an=2

17、n. (2)因為bn=2nlog2n=-n·2n, 所以Sn=-(1×2+2×22+…+n·2n), 2Sn=-[1×22+2×23+…+(n-1)·2n+n·2n+1], 兩式相減,得 Sn=2+22+23+…+2n-n·2n+1=2n+1-2-n·2n+1. 要使Sn+n·2n+1>50,即2n+1-2>50,即2n+1≥52. 易知:當n≤4時,2n+1≤25=32<52;當n≥5時,2n+1≥26=64>52.故使Sn+ n·2n+1>50成立的正整數(shù)n的最小值為5.   難點突破14——數(shù)列與解析幾何、三角的交匯問題 從近幾年新課標高考試題可以看出,不同省市的高考

18、對該內(nèi)容要求的不盡相同,考生復(fù)習(xí)時注意把握.數(shù)列與解析幾何交匯問題主要是解析幾何中的點列問題,關(guān)鍵是充分利用解析幾何的有關(guān)性質(zhì)、公式,建立數(shù)列的遞推關(guān)系式,然后借助數(shù)列的知識加以解決. 一、數(shù)列與解析幾何交匯 【示例】? (2020·陜西)如圖, 從點P1(0,0)作x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q1點處的切線與x軸交于點P2.再從P2作x軸的垂線交曲線于點Q2,依次重復(fù)上述過程得到一系列點:P1,Q1;P2,Q2;…;Pn,Qn.記Pk點的坐標為(xk,0)(k=1,2,…,n). (1)試求xk與xk-1的關(guān)系(2≤k≤n); (2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|. 二、數(shù)列與三角交匯 【示例】? (2020·安徽)在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an=lg Tn,n≥1. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=tan an·tan an+1,求數(shù)列{bn}的前n項和Sn.  

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!