欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用

上傳人:艷*** 文檔編號:111294490 上傳時間:2022-06-20 格式:DOC 頁數(shù):11 大?。?,012KB
收藏 版權(quán)申訴 舉報 下載
江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用_第1頁
第1頁 / 共11頁
江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用_第2頁
第2頁 / 共11頁
江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、江蘇省無錫市2020年高考數(shù)學(xué) 兩角和差和二倍角公式在解題中的應(yīng)用 化簡配角在解題中的應(yīng)用 1、已知角均為銳角,且 A. B. C. D. 【答案】D 【解析】 試題分析:: 由于均為銳角,,則,, 考點:湊角求值 2、若,則 . 【答案】 【解析】 試題分析: 考點:誘導(dǎo)公式 3、己知 ,則tan 2a=_________. 【答案】 【解析】 試題分析:由得,=,代入整理得,,解得=或=, 當(dāng)=時,=,所以=2,所以==; 當(dāng)=時,=-,所以=,所以==, 綜上所述,的值為. 考點:同角三

2、角函數(shù)基本關(guān)系式,二倍角公式,分類整合思想 4、已知向量,,. (1)若∥,求角的大??; (2)若,求的值. 【答案】(1);(2); 【解析】 試題分析:(1)由向量共線的坐標(biāo)表示得到關(guān)于的方程進而求解;(2)將向量模的關(guān)系式轉(zhuǎn)化為數(shù)量積的關(guān)系式,用坐標(biāo)表示數(shù)量積則可得到關(guān)于的方程,接下來可以用方程組求解,也可通過配角求解; 試題解析:(1) 因為,所以,即, 所以, 又,所以. (2)因為,所以,化簡得, 又,,則,, 所以,則, 又,, 所以. 考點:1.向量共線的坐標(biāo)表示;2.向量的數(shù)量積;3.三角函數(shù)公式; 5.已知函數(shù). (1)求的最大值,并求出

3、此時的值; (2)寫出的單調(diào)區(qū)間. 【答案】(1);(2). 【解析】 試題分析:(1)將原函數(shù)利用倍角公式,化為一角一函數(shù),進而求得其最大值及其對應(yīng)的的值;(2)根據(jù)的單調(diào)性及其運算性質(zhì),得到所求函數(shù)的單調(diào)性. 試題解析:(1) 所以的最大值為,此時. 5分 (2)由得; 所以單調(diào)增區(qū)間為:; 由得 所以單調(diào)減區(qū)間為:。 10分 考點:1.三角公式;2.三角函數(shù)的單調(diào)性. 6.(本小題滿分12分)已知函數(shù)的最大值為2,且最小正周期為. (1)求函數(shù)的解析式及其對稱軸方程; (2)若的值. 【答案】(1),;(2). 【解析】

4、試題分析:本題主要考查倍角公式、兩角和的正弦公式、誘導(dǎo)公式、三角函數(shù)的周期、三角函數(shù)的最值、圖象的對稱軸等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,先利用倍角公式化簡,再利用兩角和的正弦公式化簡,使之化簡成的形式,利用計算,利用最值,計算a的值,結(jié)合三角函數(shù)圖象求函數(shù)的對稱軸;第二問,先化簡表達式,再利用倍角公式,誘導(dǎo)公式計算即可. 試題解析:(1), 由題意的周期為,所以,得 2分 最大值為,故,又, ∴ 4

5、分 令,解得的對稱軸為. 6分 (2)由知,即, 8分 ∴ 10分 12分 考點:倍角公式、兩角和的正弦公式、誘導(dǎo)公式、三角函數(shù)的周期、三角函數(shù)的最值、圖象的對稱軸. 7.(本小題滿分12分)已知函數(shù),. (1)求的最大值和取得最大值時的集合. (2)設(shè),,,,求的值. 【答案】(1)綜上的最大值為,此時值的集合為 (2) 【解析】(1)由題可得 2分 4分 所以當(dāng),

6、即,函數(shù)取得最大值. 綜上的最大值為,此時值的集合為 6分 (2) 7分 8分 , , 10分 12分 【命題意圖】本題考查同角三角函數(shù)的基本關(guān)系、三角函數(shù)的誘導(dǎo)公式、兩角和與差的三角函數(shù)公式等基礎(chǔ)知識,三角函數(shù)最值等,意在考查學(xué)生轉(zhuǎn)化與化歸能力、綜合分析問題解決問題的能力以及運算求解能力. 8.已知函數(shù)的圖象的兩條相鄰對稱軸之間的距離為, (1)求的值; (2)若,,求的值。 【答案】(1) (2) 【解析】, 所以: (2)由(1)得

7、 因為 所以 9.(本小題滿分12分)已知向量 (1)當(dāng)時,求的值; (2)求在上的值域. 【答案】(1);(2) 【解析】 試題分析:(1)先用數(shù)量積的概念轉(zhuǎn)化為三角函數(shù)的形式,尋求角與角之間的關(guān)系,化非特殊角為特殊角;正確靈活運用公式,通過三角變換消去或約去一些非特殊角的三角函數(shù)值,注意題中角的范圍;(2)注意利用轉(zhuǎn)化的思想,本題轉(zhuǎn)化為求最值,熟悉公式的整體結(jié)構(gòu),體會公式間的聯(lián)系,倍角公式和輔助角公式應(yīng)用是重點;(3)利用倍角公式和降冪公式化簡,得到的形式,由的取值范圍確定的取值范圍,再確定的取值范圍. 試題解析:解(1) ,∴,∴ (5分) (2)

8、 ∵,∴,∴ ∴ ∴函數(shù) (10分) 考點:`1、同角三角函數(shù)的基本關(guān)系;2、求三角函數(shù)的值域. 10.若向量. (1)當(dāng)時的最大值為6,求的值; (2)設(shè),當(dāng)時,求的最小值及對應(yīng)的的取值集合. 【答案】(1);(2)的最小值為,此時 【解析】 試題分析:(1)根據(jù)平面向量的坐標(biāo)運算,將化成關(guān)于 的函數(shù)式,進而利用三角函數(shù)的恒等變形將其化成只含一個角的三角函數(shù),由三角函數(shù)的性質(zhì),結(jié)合最值列方程求出的值. (2)由(1)得: ,利用正弦函數(shù)的性質(zhì)即可求函數(shù)的最小值及對應(yīng)的的取值集合. 試題解析:(1) 最大值為1. (2)當(dāng),的最小值為,此時

9、 考點:1、平面向量的數(shù)量積;2、三角函數(shù)的性質(zhì)及其恒等變形. 復(fù)習(xí)鞏固提高 11已知,則的值為 【答案】 【解析】 試題分析:由已知得,則 . 考點:1、誘導(dǎo)公式;2、同角三角函數(shù)基本關(guān)系式. 12已知函數(shù)則函數(shù)的最大值是( ) A.4 B.3 C.5 D. 【答案】B. 【解析】 試題分析:,從而當(dāng)時,∴的最大值是. 考點:與三角函數(shù)有關(guān)的最值問題. 13將函數(shù)的圖象向左平移個單位后,所得到的圖象對應(yīng)的函數(shù)為奇函數(shù),則的最小值為( ) A. B. C. D. 【答

10、案】A 【解析】 試題分析:將函數(shù)的圖象向左平移個單位后,所得到的圖象對應(yīng)的函數(shù)解析式為,再由為奇函數(shù),可得,則 的最小值為, 故答案為A. 考點:1. 函數(shù) 的圖象變換;2. 正弦函數(shù)的奇偶性 14已知點在的內(nèi)部且,設(shè),則( ) A. B. C. D. 【答案】B. 【解析】 試題分析:以為原點,直線為軸建立如圖坐標(biāo)系.由已知可得設(shè),則由得解得,,故選B. 考點:平面向量基本定理. 15設(shè),,且夾角,則 A. B. C. D. 【答

11、案】D 【解析】 試題分析:,,故答案為D. 考點:平面向量的數(shù)量積. 16已知平面向量的夾角為,( ) A. B. C. D. 【答案】C 【解析】 試題分析:由題意得,,因此得,,由于,得,故答案為C. 考點:平面向量的數(shù)量積. 17設(shè)向量||=1,⊥,=0,則與的夾角為 . 【答案】 【解析】 試題分析:∵⊥, ∴===0, ∴||==, ∵=0,∴===-1, ∴==,∵0≤≤,∴=. 考點:平面向量數(shù)量積;平面向量垂直的充要條件 18.已知向量,,若與的夾角為鈍角,則實數(shù)的取值范圍是

12、 . 【答案】且 【解析】 試題分析:, ,若與的夾角為鈍角,則,即:,又不共線,則 ,即:,則且 考點:1.向量的夾角;2.向量的數(shù)量積;3.共線向量;4.向量的坐標(biāo)運算公式; 19.如圖,在中,已知,點分別在邊上,且,點為中點,則的值為 . A D F E B C 【答案】4 【解析】 試題分析: 考點:向量數(shù)量積 20.已知向量,,且,,則()的最小值為 . 【答案】 【解析】 試題分析:由及,則 所以 ,所以()的最小值為1 考點:向量運算

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!