【高考前三個月復習數學理科函數與導數】專題3 第16練
《【高考前三個月復習數學理科函數與導數】專題3 第16練》由會員分享,可在線閱讀,更多相關《【高考前三個月復習數學理科函數與導數】專題3 第16練(9頁珍藏版)》請在裝配圖網上搜索。
第16練 定積分問題 [題型分析高考展望] 定積分在理科高考中,也是重點考查內容.主要考查定積分的計算和利用定積分求不規(guī)則圖形的面積,題目難度不大,多為中低檔題目,常以選擇題、填空題的形式考查,掌握定積分的計算公式,會求各種類型的曲邊圖形的面積是本節(jié)重點. 常考題型精析 題型一 定積分的計算 例1 (1)(2014陜西)定積分?(2x+ex)dx的值為( ) A.e+2 B.e+1 C.e D.e-1 (2)(2014江西)若f(x)=x2+2?f(x)dx,則?f(x)dx等于( ) A.-1 B.- C. D.1 點評 (1)計算定積分要先將被積函數化簡后利用運算性質分解成幾個簡單函數的定積分,再利用微積分基本定理求解; (2)對有關函數圖象和圓的定積分問題可以利用定積分的幾何意義求解. 變式訓練1 (1)設f(x)=則?f(x)dx等于( ) A. B. C. D.不存在 (2)若定積分?dx=,則m等于( ) A.-1 B.0 C.1 D.2 題型二 利用定積分求曲邊梯形的面積 例2 (1)(2014山東)直線y=4x與曲線y=x3在第一象限內圍成的封閉圖形的面積為( ) A.2 B.4 C.2 D.4 (2)直線l過拋物線C:x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于( ) A. B.2 C. D. (3)由曲線y=sin x,y=cos x與直線x=0,x=所圍成的平面圖形(如圖中的陰影部分所示)的面積是( ) A.1 B. C. D.2-2 點評 求曲邊多邊形面積的步驟: (1)畫出草圖,在直角坐標系中畫出曲線或直線的大致圖形. (2)借助圖形確定被積函數,求出交點坐標,確定積分的上限、下限. (3)將曲邊梯形的面積表示為若干個定積分之和. (4)計算定積分. 變式訓練2 (2015陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當前最大流量的比值為________. 高考題型精練 1.已知自由落體運動的速率v=gt,則落體運動從t=0到t=t0所走的路程為( ) A. B.gt C. D. 2.(2015廣州模擬)若(sin x-acos x)dx=2,則實數a等于( ) A.-1 B.1 C.- D. 3.由直線x=-,x=,y=0與曲線y=cos x所圍成的封閉圖形的面積為( ) A. B.1 C. D. 4.已知等差數列{an}的前n項和為Sn,且S10=?(1+2x)dx,S20=17,則S30為( ) A.15 B.20 C.25 D.30 5.(2015德州模擬)圖中陰影部分的面積是( ) A.16 B.18 C.20 D.22 6.(2015北京朝陽區(qū)模擬)設f(x)=(其中e為自然對數的底數),則 ?f(x)dx的值為( ) A. B. C. D. 7.(2014湖南)已知函數f(x)=sin(x-φ),且f(x)dx=0,則函數f(x)的圖象的一條對稱軸 是( ) A.x= B.x= C.x= D.x= 8.設n=4sin xdx,則二項式(x-)n的展開式的常數項是( ) A.12 B.6 C.4 D.1 9.曲線y=與直線y=x,x=2所圍成的圖形的面積為________. 10.(2015青島模擬)已知函數f(x)=-x3+ax2+bx(a,b∈R)的圖象如圖所示,它與x軸在原點處相切,且x軸與函數圖象所圍區(qū)域(圖中陰影部分)的面積為,則a的值為________. 11.(2015福建)如圖,點A的坐標為(1,0),點C的坐標為(2,4),函數f(x)=x2,若在矩形ABCD內隨機取一點,則此點取自陰影部分的概率等于______. 12.求曲線y=,y=2-x,y=-x所圍成圖形的面積. 答案精析 第16練 定積分問題 ??碱}型精析 例1 (1)C (2)B 解析 (1)?(2x+ex)dx=(x2+ex)|=e.故選C. (2)∵f(x)=x2+2?f(x)dx, ∴?f(x)dx=(x3+2x?f(x)dx)| =+2?f(x)dx,∴?f(x)dx=-. 變式訓練1 (1)C (2)A 解析 (1)?f(x)dx=?x2dx+?(2-x)dx =x3|+| =+=. (2)根據定積分的幾何意義知,定積分?dx的值就是函數y=的圖象與x軸及直線x=-2,x=m所圍成圖形的面積,y=是一個半徑為1的半圓,其面積等于,而?dx=,即在區(qū)間[-2,m]上該函數圖象應為個圓,于是得m=-1,故選A. 例2 (1)D (2)C (3)D 解析 (1)令4x=x3,解得x=0或x=2, ∴S=?(4x-x3)==8-4=4,故選D. (2)∵拋物線方程為x2=4y, ∴其焦點坐標為F(0,1),故直線l的方程為y=1. 如圖所示,可知l與C圍成的圖形的面積等于矩形OABF的面積與函數y=x2的圖象和x軸正半軸及直線x=2圍成的圖形的面積的差的2倍(圖中陰影部分的2倍), 即S=4-2?dx==4-=. (3)方法一 由sin x=cos x(x∈(0,)),得x=. 故所求陰影部分的面積 S= (cos x-sin x)dx+ (sin x-cos x)dx =(sin x+cos x) +(-cos x-sin x) =sin +cos -sin 0-cos 0+[(-cos -sin )-(-cos -sin )]=2-2. 故選D. 方法二 由sin x=cos x(x∈(0,)),得x=. 根據圖象的對稱性,可知所求陰影部分的面積 S=2 (cos x-sin x)dx =2(sin x+cos x) =2(sin +cos -sin 0-cos 0) =2-2. 故選D. 變式訓練2 1.2 解析 由題意可知最大流量的比即為橫截面面積的比,建立以拋物線頂點為原點的直角坐標系,如圖所示, 設拋物線方程為y=ax2,將點(5,2)代入拋物線方程得a=,故拋物線方程為y=x2,拋物線的橫截面面積為S1=2dx =2=(m2), 而原梯形下底為10-2=6(m), 故原梯形面積為S2=(10+6)2=16, ==1.2. 高考題型精練 1.C [由題意,可知所走路程為==gt2=gt.] 2.A [(sinx-acosx)dx=(-cos x-asin x)=-a+1=2,a=-1.] 3.D [cos xdx=sin x=sin -sin=.] 4.A [由已知得S10=?(1+2x)dx=12, 據等差數列性質可得S10=12,S20-S10=5,S30-S20=S30-17亦成等差數列, 故有12+S30-17=10?S30=15.] 5.B [S=?dy==18.] 6.A [根據定積分的運算法則,由題意,可知?f(x)dx=?x2dx+?dx=x3|+ln x|=+1=.] 7.A [∵sin(x-φ)dx=-cos(x-φ)=0, ∴-cos(-φ)+cos φ=0. ∴cos(-φ)-cos φ=0. ∴sin φ-cos φ=0. ∴sin(φ-)=0. ∴φ-=k1π(k1∈Z). ∴φ=k1π+(k1∈Z). ∴f(x)=sin(x-k1π-)(k1∈Z). 由x-k1π-=k2π+(k1,k2∈Z) 得x=(k1+k2)π+π(k1,k2∈Z), ∴f(x)的對稱軸方程為x=(k1+k2)π+π(k1,k2∈Z).故x=為函數f(x)的一條對稱軸.] 8.B [由定積分得n=-4cos x=4, 二項式的通項公式為Tk+1=Cx4-k(-)k =C(-1)kx4-2k, 由4-2k=0,得k=2, 所以常數項為T3=C(-1)2=6,故選B.] 9.-ln 2 解析 S=?(x-)dx = =-ln 2. 10.-1 解析 由曲線在原點處與x軸相切,可得f′(0)=b=0, 此時f(x)=-x3+ax2=x2(a-x), 據定積分知陰影部分面積-?(-x3+ax2)dx=, 解得a=-1. 11. 解析 由題意知,陰影部分的面積 ?(4-x2)dx==, ∴所求概率P===. 12.解 由 得交點A(1,1); 由 得交點B(3,-1). 故所求面積S=?dx+?dx =+ =++=.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考前三個月復習數學理科 函數與導數 【高考前三個月復習數學理科 函數與導數】專題3 第16練 考前 三個月 復習 數學 理科 函數 導數 專題 16
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-11144112.html