2019-2020年九年級數(shù)學競賽輔導講座 第十八講 圓的基本性質(zhì)
《2019-2020年九年級數(shù)學競賽輔導講座 第十八講 圓的基本性質(zhì)》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年九年級數(shù)學競賽輔導講座 第十八講 圓的基本性質(zhì)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2019-2020年九年級數(shù)學競賽輔導講座第十八講圓的基本性質(zhì) 到定點(圓心)等于定長(半徑)的點的集合叫圓,圓常被人們看成是最完美的事物,圓的圖形在人類進程中打下深深的烙印. 圓的基本性質(zhì)有:一是與圓相關(guān)的基本概念與關(guān)系,如弦、弧、弦心距、圓心角、圓周角等;二是圓的對稱性,圓既是一個軸對稱圖形,又是一中心對稱圖形.用圓的基本性質(zhì)解題應(yīng)注意: 1.熟練運用垂徑定理及推論進行計算和證明; 2.了解弧的特性及中介作用; 3.善于促成同圓或等圓中不同名稱等量關(guān)系的轉(zhuǎn)化.熟悉如下基本圖形、基本結(jié)論: 例題求解】 【例1】在半徑為1的00中,弦AB、AC的長分別為和,則ZBAC
2、度數(shù)為 作出輔助線,解直角三角形,注意AB與AC有不同的位置關(guān)系. 注:由圓的對稱性可引出許多重要定理,垂徑定理是其中比較重要的一個,它溝通了線段、角與圓弧的關(guān)系,應(yīng)用的一般方法是構(gòu)造直角三角形,常與勾股定理和解直角三角形知識結(jié)合起來. 圓是一個對稱圖形,注意圓的對稱性,可提高解與圓相關(guān)問題周密性. 【例2】如圖,用3個邊長為1的正方形組成一個對稱圖形,則能將其完全覆蓋的圓的最小半徑為() A.B.C.D. 思路點撥所作最小圓圓心應(yīng)在對稱軸上,且最小圓應(yīng)盡可能通過圓形的某些頂點,通過 設(shè)未知數(shù)求解. 【例3】如圖,已知點A、B、C、D順次在00上,AB=BD,BM丄AC于M,求
3、證:AM=DC+CM. 思路點撥用截長(截AM)或補短(延長DC)證明,將問題轉(zhuǎn)化為線段相等的證明,證題的關(guān) 鍵是促使不同量的相互轉(zhuǎn)換并突破它. 【例4】如圖甲,00的直徑為AB, 分別作直線CD、ED,交直線AB于點F,M. ⑴求ZC0A和ZFDM的度數(shù); (2) 求證:AFOMsA; (3) 如圖乙,若將垂足G改取為半徑0B上任意一點,點D改取在EB上,仍作直線CD、ED,分別交直線AB于點F、M,試判斷:此時是否有△FDMsA?證明你的結(jié)論. 思路點撥⑴在RtACOG中,利用OG=OA=OC;(2)證明Z=ZFDM,ZCMO= ZFMD;(3)利用圖甲的啟示思考.
4、 注:善于促成同圓或等圓中不同名稱的相互轉(zhuǎn)化是解決圓的問題的重要技巧,此處,要努力把圓與直線形相合起來,認識到圓可為解與直線形問題提供新的解題思路,而在解與圓相關(guān)問題時常用到直線形的知識與方法(主要是指全等與相似). 【例5】已知:在厶ABC中,AD為ZBAC的平分線,以C為圓心,CD為半徑的半圓交BC的延長線于點E,交AD于點F,交AE于點M,且ZB=ZCAE,EF:FD=4:3. (1) 求證:AF=DF; ⑵求ZAED的余弦值; ⑶如果BD=10,求△ABC的面積. 思路點撥(1)證明ZADE=ZDAE;(2)作AN丄BE于N,cosZAED=,設(shè)FE=4x
5、,FD=3x,利用有關(guān)知識把相關(guān)線段用x的代數(shù)式表示;(3)尋找相似三角形,運用比例線段求出x的值. 注:本例的解答,需運用相似三角形、等腰三角形的判定、面積方法、代數(shù)化等知識方法思想,綜合運用直線形相關(guān)知識方法思想是解與圓相關(guān)問題的關(guān)鍵. 學歷訓練 1.D是半徑為5cm的00內(nèi)一點,且0D=3cm,則過點D的所有弦中,最小弦AB=. 2?閱讀下面材料: 對于平面圖形A,如果存在一個圓,使圖形A上的任意一點到圓心的距離都不大于這個圓的半徑,則稱圖形A被這個圓所覆蓋. 對于平面圖形A,如果存在兩個或兩個以上的圓,使圖形A上的任意一點到其中某個圓的圓心的距離都不大于這個圓的半徑,則
6、稱圖形A被這些圓所覆蓋. 例如:圖甲中的三角形被一個圓所覆蓋,圖乙中的四邊形被兩個圓所覆蓋. 回答下列問題: (1) 邊長為lcm的正方形被一個半徑為r的圓所覆蓋,r的最小值是cm; (2) 邊長為lcm的等邊三角形被一個半徑為r的圓所覆蓋,r的最小值是cm; (3) 長為2cm,寬為lcm的矩形被兩個半徑都為r的圓所覆蓋,r的最小值是cm. 3.世界上因為有了圓的圖案,萬物才顯得富有生機,以下來自現(xiàn)實生活的圖形中都有圓 它們看上去多么美麗與和諧,這正是因為圓具有軸對稱和中心對稱性. (1) 請問以下三個圖形中是軸對稱圖形的有,是中心對稱圖形的有 (分別用下面三個
7、圖的代號a,b,c填空). 徒手畫均可,但要盡可能準確些,美觀些). (2) 請你在下面的兩個圓中,按要求分別畫出與上面圖案不重復(fù)的圖案(草圖)(用尺規(guī)畫或 a. 是軸對稱圖形但不是中心對稱圖形. b. 既是軸對稱圖形又是中心對稱圖形. 4. 如圖,AB是00的直徑,CD是弦,若AB=10cm,CD=8cm,那么A、B兩點到直線CD的距 A.12cm B.10cmC.8cm 6cm D. 離之和為() 5. —種花邊是由如圖的弓形組成的,ACB的半徑為5,弦AB=8,則弓形的高CD為() A.2B.C.3D. 6. 如圖,在三個等圓上各自有一條劣弧AB
8、B、cD、EF?如果AB+CD=EF,那么AB+CD與E的大 小關(guān)系是() 7. 電腦CPU芯片由一種叫“單晶硅”的材料制成,未切割前的單晶硅材料是一種薄形圓片,叫“晶圓片”.現(xiàn)為了生產(chǎn)某種CPU芯片,需要長、寬都是1cm的正方形小硅片若干.如果晶圓片的直徑為10.05cm,問:一張這種晶圓片能否切割出所需尺寸的小硅片66張?請說明你的方法和理由(不計切割損耗). B (第7題)(第8題) 8. 如圖,已知GO的兩條半徑OA與OB互相垂直,C為AmB上的一點,且AB2+OB2=BC2,求ZOAC的度數(shù). 9. 不過圓心的直線交GO于C、D兩點,AB是GO的直徑,AE
9、丄,垂足為E,BF丄,垂足為F. (1) 在下面三個圓中分別補畫出滿足上述條件的具有不同位置關(guān)系的圖形; (2) 請你觀察(1)中所畫圖形,寫出一個各圖都具有的兩條線段相等的結(jié)論(不再標注其他字母,找結(jié)論的過程中所連輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程); (3) 請你選擇(1)中的一個圖形,證明(2)所得出的結(jié)論. 10. 以AB為直徑作一個半圓,圓心為O,C是半圓上一點,且OC2=ACXBC, 則ZCAB=. 11. 如圖,把正三角形ABC的外接圓對折,使點A落在BC的中點A'上,若BC=5,則折痕 在厶ABC內(nèi)的部分DE長為. 12.如圖,已知AB為00的弦,直徑
10、MN與AB相交于00內(nèi),MC丄AB于C,ND丄AB于D,若MN=20,AB=,則MC—ND=. (第11題)(第12題〉(第13題) 13. 如圖,已知00的半徑為R,C、D是直徑AB同側(cè)圓周上的兩點,AC的度數(shù)為96°,BD 的度數(shù)為36°,動點P在AB上,則CP+PD的最小值為. 14. 如圖1,在平面上,給定了半徑為r的圓0,對于任意點P,在射線0P上取一點P',使得0PX0Pz=r2,這種把點P變?yōu)辄cP'的變換叫作反演變換,點P與點P'叫做互為反演點. 八、、? (1)如圖2,00內(nèi)外各有一點A和B,它們的反演點分別為A'和B',求證:ZA,=ZB; (2
11、)如果一個圖形上各點經(jīng)過反演變換得到的反演點組成另一個圖形,那么這兩個圖形叫做互為反演圖形. ① 選擇:如果不經(jīng)過點0的直線與00相交,那么它關(guān)于00的反演圖形是() A.一個圓B.—條直線C.一條線段D.兩條射線 ② 填空:如果直線與00相切,那么它關(guān)于00的反演圖形是,該圖形與圓0的位 置關(guān)系是. 15. 如圖,已知四邊形ABCD內(nèi)接于直徑為3的圓0,對角線AC是直徑,對角線AC和BD的交點為P,AB=BD,且PC=0.6,求四邊形ABCD的周長. 16. 如圖,已知圓內(nèi)接△ABC中,AB>AC,D為1BAC的中點,DE丄AB于E,求證:BD2-AD2=AB (第15題)
12、(第16題) 17.將三塊邊長均為l0cm的正方形煎餅不重疊地平放在圓碟內(nèi),則圓碟的直徑至少是多少?(不考慮其他因素,精確到0.1cm) 18.如圖,直徑為13的00',經(jīng)過原點0,并且與軸、軸分別交于A、B兩點,線段0A、0B(0A>0B)的長分別是方程的兩根. (1)求線段0A、0B的長; ⑵已知點C在劣弧0A上,連結(jié)BC交0A于D,當0C2=CDXCB時,求C點坐標; (3)在00,上是否存在點P,使S^pod=S^abd?若存在,求出P點坐標;若不存在,請說明理由. 例4(l)ZCOA=60°,ZEDM=120°t 【例題求解】 例1 參考答案 15°或75
13、°分AB、AC在圓心0同側(cè)、異側(cè)兩種情況討論. fa?+]=' (2—小2+(*)2=/ 選D如圖,得 解得 _13_5717 a_16,r16-' 延長DC至N.使CN=CM.連結(jié)BN,則/BCN二ZBAD=ZBDA=ZBCA,可證得厶BCN也ABCM, RtABA/Vf^RtABDN. r/ a X (2)由RtA
14、CGM^RtAEGM,得ZGMC=ZGME,又ZGME,:.Z.OMC=^DMF,:.△FDMs/\COM; (3)ZFDM=ZCOA,先證RtACGM^RtA^GM,得ZGMC=ZGJWE,「?△FDMsACOM.故結(jié)論仍成立. 例5如圖. (1) 由ZADE=ZDAE,得EA=ED,又ZDFE=90°,.?.AF=DF; (2) 過A點作AN丄BE于N,設(shè)FE=lx,FD=3r,則DE=5y,;.AE=DE=5m,AF=FD=3h. *?'S/\ade=-|~AD?EF=*DE?AN,(3jt+3t)?4工=5才?AN,AAN=^j. 7 由勾股定理得,EN=-^J-,.,.
15、cosZA£D=^=^—=^; 5AEox25 (3〉由ZCAE=ZB^ZAEC=ZBEA?得厶CAEs△ABE. AAE2=BE-CE,BP(5t)2=(10+5x)*寺工解得工=2, AN= 24 ?BC=BD+DC—15nS/^Afjc= S一 yBC-AN=72. 【學力訓練】 2.(1 3?(1)axb>c;a>aC2)略 7?可以切割出66個小正方形?按下列方式疊放:4X94-2X8+2X6+2X1=66(個〉 8.設(shè)①o的半徑為r,則AB=?r,BC=?,以B為圓心,拆&為半徑作圓,與QO交于兩點C,C',連BC,BC\AC,AC
16、',延長 BO交?O于D,連CD,CD=”,BD=2CD,ZOAC=I5°或ZOAC=75°. 圖1 圖2 圏3 圖4 13. 73R設(shè)D'是D點關(guān)于直徑AB對稱的點,連CD'交AB于P,則P點使CP+PD最小,ZCOD’=120°,CP+PD=CP+PD'=CD'=^R. 14. (1)VA.B的反演點分別是A\Br,:.OA?OA',OB?OB'=r2:.OA-OA^OB?OB\即汾=閤,又 ZO=ZO,:.△ABMAB'A'O,ZA'=ZB(2)①A;②圓;內(nèi)切. 15. 連BO并延長交AD于H,則BH丄AD.:.CD//BHf^=~,得CD=1,AD=2吃,A
17、H=d,OH=*,BH=2,AB= ■/^,BC=s/^',所求四邊形周長為1+2雄+箱+慮. 16.BD2-AD2=(BE2+EZ)2)-(AE2+ED2)=(BE+AE)(BE-AE)^AB?(BE-AE). 只需證明AC=BE-AE即可,在BA上截取BF=AC,連DF可證明△DBF^^\DCA,則DF^AC,AE=EF. 17-通過動手實踐,我們可以探索性地畫出下列四類情形: E y B 2' X 圖1、圖2不符合要求. 可見,選擇圖4來“放”煎餅,圓碟的直徑最小,約是25.8cm. 解得OD=^,S“d=*AD?BO=罟,???SAWD-y,APOD中0D邊
18、上的髙為13,即點P到工軸距離為13,V ?(/上的點到工軸的最大距離為9 …??點P不在OC/上9即在G)O上不存在點P,使S^pou—S^abd? 直徑為2?OB=2?/(10+x)2t-52=2^/(10+y)2+5225.8(cm) 18.(1)OA+OB=~k,OA?OB=60,OA2+OB2=AB2=132.解得人=一17,OA=12,()B=5. (2)連結(jié)(YC,交AO于E,可證明△OCBsADCO,dd=A^,O,C丄OA,OE=AE=6,CE=4 (3)假設(shè)在G)O’上存在點P,使=Ssbd? ???OB//EC,:.HOBWHECD、:.焉=鋁,即y= 若按圖3放.每個正方形對角線長為1072,圓碟直徑為20^28.3(cm); 若按圖4放,考慮到它的軸對稱性,圓碟的圓心O應(yīng)在正方形的邊DE上,設(shè)DO=rcm,如圖3(4),DC=10,OC=10+±,BC=5,OE=10—工,EF=10,OB=OF,由勾股定理得(10+工嚴+5?=(10-乂嚴+|10S解得x=y.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學下冊6整理和復(fù)習2圖形與幾何第7課時圖形的位置練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習2圖形與幾何第1課時圖形的認識與測量1平面圖形的認識練習課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認識作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊2百分數(shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學下冊1負數(shù)第1課時負數(shù)的初步認識作業(yè)課件新人教版
- 2023年六年級數(shù)學上冊期末復(fù)習考前模擬期末模擬訓練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學上冊易錯清單十二課件新人教版
- 標準工時講義
- 2021年一年級語文上冊第六單元知識要點習題課件新人教版
- 2022春一年級語文下冊課文5識字測評習題課件新人教版
- 2023年六年級數(shù)學下冊6整理和復(fù)習4數(shù)學思考第1課時數(shù)學思考1練習課件新人教版