《六年級上冊數(shù)學教案-同步教程:《比的認識和意義》 人教版(無答案 )》由會員分享,可在線閱讀,更多相關《六年級上冊數(shù)學教案-同步教程:《比的認識和意義》 人教版(無答案 )(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、授課
教師
上課
時間
第( )次課
課時: 3 課時
教學
課題
比的認識和意義
教學
目標
1、 比的意義和基本性質
2、 比的各部分名稱
3、 利用比的基本性質化簡比
教學
重點/
難點
重點:比的意義和基本性質
難點:利用比的基本性質化簡比,區(qū)別“化簡比”和求“比值”
課后
作業(yè)
根據(jù)學生的上課情況布置
知識導入(進入美妙的世界啦~)
(一)比的意義
知識梳理
知識點一:比的意義
比:兩個數(shù)相除也叫兩個數(shù)的比。比表
2、示兩個數(shù)的關系,可以寫成比的形式,比可以表示兩個相同量的關系,即倍數(shù)關系。也可以表示兩個不同量的比,得到一個新量。例:路程÷速度=時間。
知識點二:比的讀、寫法
1、比的符號:“:”表示,叫做比號
2、比的寫法:兩個數(shù)相除改寫成比的形式,有規(guī)范的寫法,即改寫成帶有“:”的形式或分數(shù)形式,而且這兩種形式之間可以互相改寫。例如:15比7記作15:7或
3、比的讀法:兩種形式的比,都讀作幾比幾,如15:7讀作15比7,呈現(xiàn)為分數(shù)形式的仍讀作“15比7”
知識點三:比的各部分名稱
在兩個數(shù)的比中,比號前面的數(shù)叫做比的前項,比
3、號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
例如 15 : 10 = 15÷10=
∶ ∶ ∶
前項 比號 后項 比值
思考:比的前項和后項能隨便交換位置嗎?為什么?
注意:1、根據(jù)比與除法、分數(shù)的關系,可以理解比的后項不能為0;
2、在體育比賽中出現(xiàn)兩隊的分是2:0,1:0等,這只是一種記分的形式,不表示兩個數(shù)相除的關系。
知識點四:比與分數(shù)、除法的關系
1、比、分數(shù)、除法之間的區(qū)別
(1)意義不同:比是表示兩個量(或數(shù))的關系;除法是一種運算;分數(shù)則是一個
4、數(shù)
(2)結果表達不同:除法一般要求出商;比只有要求計算比值時才通過計算求商;分數(shù)本身就是一個數(shù)值
※2、三者之間的關系【】
比
前項
:(比號)
后項
比值
除法
被除數(shù)
÷(除號)
除數(shù)
商
分數(shù)
分子
—(分數(shù)線)
分母
分數(shù)值
例題精講
【題型一、比的意義】
【例】一面紅旗,長3分米,寬2分米。長是寬的幾倍?寬是長的幾分之幾?
3÷2= = ?? 2÷3=
(1)3÷2表示什么?長是寬的幾倍也可以說成誰和誰在比?是幾比幾?長和寬的比是3比2表示什么
5、?
(2)2÷3表示什么?寬是長的幾分之幾也可以說成是誰和誰在比?是幾比幾?寬和長的比是2比3表示什么?
變式練習:
有5個紅球和10個白球,求紅球是白球的幾分之幾,怎么算?也可以怎么說?求白球是紅球的幾倍,怎么算?也可以怎么說?
【例】 一輛汽車,2小時行駛100千米,每小時行駛多少千米?
?。?)求的是什么?誰除以誰?也就是誰和誰進行比較?
(2)汽車行駛路程和時間的比是100比2表示什么?
(3)思考:單價可以說成是誰和誰的比?
工作效率可以說成是誰和誰的比?
商可以
6、說成是誰和誰的比?
變式練習:
(1)學校里有10棵楊樹,7棵柳樹,楊樹和柳樹棵數(shù)的比是(????? ),柳樹和楊樹棵樹的比是(???? )
(2)小華用2分鐘口算了50道題,小華口算的題量和所用時間的比是(???? )。
(3)學校食堂買20千克青菜,用了10元錢;買了30千克蘿卜,用了42元錢;買蘿卜和青菜數(shù)量的比是(??? ),青菜和蘿卜單價的比是(??? )。
(4)甲數(shù)與乙數(shù)的比是2:3,乙數(shù)和丙數(shù)的比是4:5.甲數(shù)和丙數(shù)的比是( )
(5)若A÷B=5(A、B都不等于0)則A:B=( ):( )
若A=B(A、B都不等于0)
7、 則A:B=( ):( )
【題型二、比的各部分名稱】
【例】9﹕8中,9是比的( )項,8是比的( ?。╉?,比值是( ?。?
變式練習:
(1)一個比的后項是5,比值是,則比的前項是( )
(2)比的( )不能為零。
A 前項 B 后項 C 比值 D 無法確定
【題型三、比與分數(shù)、除法的關系】
【例】4 :5==( )÷( )
變式練習:
( ) :12==7÷( )
鞏固訓練
(1)小明騎自行車5分鐘行了1500米,
8、寫出小明所行路程和所用時間的比,并求出比值。(想一想,這個比值表示什么?)
(2)下面各比的前項、后項和比值分別是什么?
8 :11=8÷11= 1.2:0.3=1.2÷0.3=4
(3)15:5=( ) 1:2=( ) :=( )
15:( )=3 ( ):10=
(4)判斷。
①比的前項、后項可以是任意數(shù)。( )
②小明的身高是142cm,爸爸的身高是1.8m,小明和爸爸的身高比是142:1.8。( )
③一場球賽的比分是2:0,因此比的后項可
9、以是0。( )
(二)比的基本性質
知識梳理
知識點一:比的基本性質
比的基本性質:比的前項和后項同時乘或除以相同的數(shù)(0除外),比值不變。
(根據(jù)比的性質可以把比值化成最簡整數(shù)比;比的基本性質同樣適用于連比)
字母表示:
【注:1、商不變的性質:在除法里,被除數(shù)和除數(shù)同時乘(或除以)一個相同的數(shù)(0除外),商不變。2、分數(shù)的基本性質:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變?!?
知識點二:化簡比
1、化簡比的方法:
(1
10、) 用比的前項和后項同時除以它們的最大公約數(shù)。
(2)兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。
(3)兩個小數(shù)的比,向右移動小數(shù)點的位置。也是先化成整數(shù)比。
(4)當一個比的前后項不是整數(shù)時,把比的前后項擴大成整數(shù)在化成最簡整數(shù)比。
2、求比值和化簡比的區(qū)別在于:
(1)意義不同。比的前項除以后項所得的商,叫做比值?;啽仁前褍蓚€數(shù)的比化成最簡單的整數(shù)比。
(2)計算方法不同。求比值是用比的前項除以比的后項。化簡比是根據(jù)比的基本性質對比進行變形,化成最簡單的整數(shù)比。
(3)計算結果所表示的意義不同。求比值的結果是一個數(shù)。它有三種表
11、示形式,即整數(shù)、小數(shù)或分數(shù),如例1中的比值是1、0.2、3。化簡比的結果是最簡單的整數(shù)比,仍是一個比。如例2中的最簡比是5:4、3:1。
例題精講
【題型一、比的基本性質】
【例】( ),叫做比的基本性質
變式練習:
1、4÷
12、5==28∶( ?。剑ā 。?0
2、比的前項除以,要使比值不變,比的后項應該( ?。?
3、 如果把3∶7的前項加上9,要使它的比值不變,后項應( ?。?
【題型二、化簡比】
【例】把下面各比化成最簡單的整數(shù)比。
15:10 180:120 0.75:2
變式練習:
1、 在下面各比中,與0.5∶0.6的比值相等的比是( ?。?。
A. ∶ B. ∶ C. 25∶26
2、如果一個比是最簡單的整數(shù)比,那么這個比的前項和后項
13、一定是( ?。?。
A. 質數(shù) B. 互質數(shù) C. 整數(shù)
3、把下面各比化成最簡單的整數(shù)比。
12∶21 0.8∶2.4
∶ ∶0.75
千克∶500克 15秒∶分
鞏固訓練
一、 填空題。
1、7:8=( )÷( ) 9÷7=( ):( )
2、長方形的長是9厘米,寬是5厘米,這個長方形長與寬的比是( ),長與周長的比是( ),寬與面積的比是( )。
3、一輛汽車3小時行駛了
14、240千米。這輛汽車行駛的路程與時間的比是( ),比值是( ),這個比值表示( )。
4、甲數(shù)是乙數(shù)的,甲數(shù)和乙數(shù)的比是( ),乙數(shù)和甲數(shù)的比是( )。
5、甲數(shù)是乙數(shù)的5倍,甲數(shù)和乙數(shù)的比是( ),甲數(shù)和甲乙兩數(shù)的總數(shù)比是( )。
6、六年級一班男生人數(shù)與全班人數(shù)的比是5:9,這個班女生人數(shù)與男生人數(shù)的比是( )。
7、一個大正方形與一個小正形的邊長比8:3,這個大正方形的面積比與小小正方形的面積比是( )。
8、兩個數(shù)的比值是0.5,這兩個數(shù)的最簡比是( )。
9、前
15、項和后項相同,這兩個數(shù)的最簡比是( )。
10、化簡比的結果是一個( ),求比值的結果是一個( )。
11、小芳和小明走同一條路,小芳用了5分鐘,小明用了4分鐘。小芳和小明所用的時間比是( ),速度比是( )。
12、把10克鹽放入90克水中,鹽與水的比是( )鹽與鹽水的比是( )。
13、一杯糖水,糖與糖水的比是1:100,糖與水的比是( )。
14、0.3=( ):( )=( )÷( )
二、判斷題。對的在括號里打“√”,錯的在括號里打“×”。
1、比的前項不能為0。( )
2、5米:8米的比值是米。( )
3、3:5的前項加上6,后項加上10,比值是不變的。( )
4、是一個比。( )
5、一個比的后項是8,比值是0.5,比的前項是4。( )
6、兩個正方形的邊長比是2:5,它們的面積比是4:25。( )
7、比的前項和后項同時乘或除以相同的數(shù),比值不變。( )
回顧小結
(一日悟一理,日久而成學)
一、 方法小結:
二、本節(jié)課我做的比較好的地方是:
三、我需要努力的地方是: