《2019年高考數(shù)學(xué)三輪沖刺 專題04 不等式專項(xiàng)講解與訓(xùn)練》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué)三輪沖刺 專題04 不等式專項(xiàng)講解與訓(xùn)練(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第4講 不等式
函數(shù)與不等式
考向1 不等式的解法
1.一元二次不等式的解法
先化為一般形式ax2+bx+c>0(a≠0),再求相應(yīng)一元二次方程ax2+bx+c=0(a≠0)的根,最后根據(jù)相應(yīng)二次函數(shù)圖象與x軸的位置關(guān)系,確定一元二次不等式的解集.
2.簡(jiǎn)單分式不等式的解法
(1)>0(<0)?f(x)g(x)>0(<0);
(2)≥0(≤0)?f(x)g(x)≥0(≤0)且g(x)≠0.
2.利用基本不等式求最大值、最小值的基本法則
(1)如果x>0,y>0,xy=p(定值),當(dāng)x=y(tǒng)時(shí),x+y有最小值2(簡(jiǎn)記為:積定,和有最小值).
(2)如果x>0,y>0,x
2、+y=s(定值),當(dāng)x=y(tǒng)時(shí),xy有最大值s2(簡(jiǎn)記為:和定,積有最大值).
(1)若直線+=1(a>0,b>0)過(guò)點(diǎn)(1,2),則2a+b的最小值為_(kāi)_______.
(2)若a,b∈R,ab>0,則的最小值為_(kāi)_______.
【答案】 (1)8 (2)4
【解析】 (1)因?yàn)橹本€+=1(a>0,b>0)過(guò)點(diǎn)(1,2),所以+=1,因?yàn)閍>0,b>0,所以2a+b=(2a+b)=4++≥4+2=8,當(dāng)且僅當(dāng)=,即a=2,b=4時(shí)等號(hào)成立,所以2a+b的最小值為8.
(2)=++,由基本不等式得,++≥2+=4ab+≥4,當(dāng)且僅當(dāng)=,4ab=同時(shí)成立時(shí)等號(hào)成立.
利用基本
3、不等式求最值應(yīng)關(guān)注的三點(diǎn)
(1)利用基本不等式必須注意“一正二定三相等”的原則.
(2)基本不等式在解題時(shí)一般不能直接應(yīng)用,而是需要根據(jù)已知條件和基本不等式的“需求”尋找“結(jié)合點(diǎn)”,即把研究對(duì)象化成適用基本不等式的形式.常見(jiàn)的轉(zhuǎn)化方法有:
①x+=x-a++a(x>a).
②若+=1,則mx+ny=(mx+ny)·1
=(mx+ny)·≥ma+nb+2(字母均為正數(shù)).
(3)若兩次連用基本不等式,要注意等號(hào)的取得條件的一致性,否則會(huì)出錯(cuò).
【對(duì)點(diǎn)訓(xùn)練】
1.設(shè)x>0,則函數(shù)y=x+-的最小值為( )
A.0 B.
C.1 D.
【答案】A
【
4、解析】:選A.y=x+-=+-2≥2-2=0.
當(dāng)且僅當(dāng)x+=,即x=時(shí)等號(hào)成立.
所以函數(shù)的最小值為0.故選A.
2.已知a>0,b>0,若不等式--≤0恒成立,則m的最大值為( )
A.4 B.16
C.9 D.3
【答案】B
【解析】:選B.因?yàn)閍>0,b>0,所以由--≤0恒成立得m≤(3a+b)=10++恒成立.因?yàn)椋?=6,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立,故10++≥16,所以m≤16,即m的最大值為16.故選B.
線性規(guī)劃
1.解決線性規(guī)劃問(wèn)題的一般步驟
(1)作圖——畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平面直線系中的任意一條直線l.
5、(2)平移——將l平行移動(dòng),以確定最優(yōu)解所對(duì)應(yīng)的點(diǎn)的位置.有時(shí)需要對(duì)目標(biāo)函數(shù)l和可行域邊界的斜率的大小進(jìn)行比較.
(3)求值——解有關(guān)方程組求出最優(yōu)解的坐標(biāo),再代入目標(biāo)函數(shù),求出目標(biāo)函數(shù)的最值.
2.目標(biāo)函數(shù)的三種類型
(1)直線型:z=ax+by+c.
(2)斜率型:z=.
(3)距離型:z=(x-x0)2+(y-y0)2.
(1)(2017·高考全國(guó)卷Ⅰ)設(shè)x,y滿足約束條件則z=x+y的最大值為( )
A.0 B.1
C.2 D.3
(2)(2018·成都第一次檢測(cè))若實(shí)數(shù)x,y滿足約束條件,則的最小值為_(kāi)_______.
(3)(2019·太
6、原模擬)已知實(shí)數(shù)x,y滿足條件,則z=x2+y2的取值范圍為_(kāi)_______.
【答案】 (1)D (2)- (3)[,13]
【解析】 (1)不等式組表示的平面區(qū)域如圖中陰影部分所示,平移直線y=-x,當(dāng)直線經(jīng)過(guò)點(diǎn)A(3,0)時(shí),z=x+y取得最大值,此時(shí)zmax=3+0=3.故選D.
(2)
作出不等式組表示的平面區(qū)域,如圖中陰影部分所示,因?yàn)楸硎酒矫鎱^(qū)域內(nèi)的點(diǎn)與定點(diǎn)P(0,1)連線的斜率.由圖知,點(diǎn)P與點(diǎn)A(1,-)連線的斜率最小,
所以()min=kPA==-.
(3)不等式組表示的平面區(qū)域如圖中陰影部分所示,由此得z=x2+y2的最小值為點(diǎn)O到直線BC:2x-y
7、+2=0的距離的平方,zmin=,最大值為點(diǎn)O與點(diǎn)A(-2,3)的距離的平方,zmax=|OA|2=13.
解決線性規(guī)劃問(wèn)題應(yīng)關(guān)注的三點(diǎn)
(1)首先要找到可行域,再注意目標(biāo)函數(shù)所表示的幾何意義,找到目標(biāo)函數(shù)達(dá)到最值時(shí)可行域的頂點(diǎn)(或邊界上的點(diǎn)),但要注意作圖一定要準(zhǔn)確,整點(diǎn)問(wèn)題要驗(yàn)證解決.
(2)畫可行域時(shí)應(yīng)注意區(qū)域是否包含邊界.
(3)對(duì)目標(biāo)函數(shù)z=Ax+By中B的符號(hào),一定要注意B的正負(fù)與z的最值的對(duì)應(yīng),要結(jié)合圖形分析.
【對(duì)點(diǎn)訓(xùn)練】
1.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是( )
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3
8、]
【答案】B.
【解析】不等式組表示的平面區(qū)域如圖中陰影部分所示,作出直線l0:y=x,平移直線l0,當(dāng)直線z=x-y過(guò)點(diǎn)A(2,0)時(shí),z取得最大值2,當(dāng)直線z=x-y過(guò)點(diǎn)B(0,3)時(shí),z取得最小值-3,所以z=x-y的取值范圍是[-3,2],故選B.
2.(2018·惠州第三次調(diào)研)已知實(shí)數(shù)x,y滿足:,若z=x+2y的最小值為-4,則實(shí)數(shù)a=( )
A.1 B.2
C.4 D.8
【答案】B.
【解析】作出不等式組表示的平面區(qū)域,如圖中陰影部分所示,當(dāng)直線z=x+2y經(jīng)過(guò)點(diǎn)C(-a,)時(shí),z取得最小值-4,所以-a+2·=-4,解得a=2,選B.
3.某
9、高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2 100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為_(kāi)_________元.
【答案】:216 000
課時(shí)作業(yè)
[基礎(chǔ)達(dá)標(biāo)]
1.已知關(guān)于x的不等式(ax-1)(x+1)<0的解集是(-∞,-1)∪,則a=( )
A.2 B.-2
C.-
10、 D.
【答案】B.
【解析】根據(jù)不等式與對(duì)應(yīng)方程的關(guān)系知-1,-是一元二次方程ax2+x(a-1)-1=0的兩個(gè)根,所以-1×=-,所以a=-2,故選B.
2.對(duì)于任意實(shí)數(shù)a,b,c,d,有以下四個(gè)命題:
①若ac2>bc2,且c≠0,則a>b;
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若a>b,則>.
其中正確的有( )
A.1個(gè) B.2個(gè)
C.3個(gè) D.4個(gè)
【答案】B
【解析】:選B.①ac2>bc2,且c≠0,則a>b,①正確;②由不等式的同向可加性可知②正確;③需滿足a,b,c,d均為正數(shù)才成立;④錯(cuò)誤,比如:令a
11、=-1,b=-2,滿足-1>-2,但<.故選B.
3.設(shè)x、y滿足約束條件則z=2x+y的最小值是( )
A.-15 B.-9
C.1 D.9
【答案】A
【解析】法一:作出不等式組對(duì)應(yīng)的可行域,如圖中陰影部分所示.易求得可行域的頂點(diǎn)A(0,1),B(-6,-3),C(6,-3),當(dāng)直線z=2x+y過(guò)點(diǎn)B(-6,-3)時(shí),z取得最小值,zmin=2×(-6)-3=-15,選擇A.
6.(2017·高考天津卷)電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長(zhǎng)、廣告播放時(shí)長(zhǎng)、收視人次如下表所示:
連續(xù)劇播放
時(shí)長(zhǎng)
12、(分鐘)
廣告播放
時(shí)長(zhǎng)(分鐘)
收視
人次(萬(wàn))
甲
70
5
60
乙
60
5
25
已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(1)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問(wèn)電視臺(tái)每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?
【解析】:(1)由已知,x,y滿足的數(shù)學(xué)關(guān)系式為
即
該二元一次不等式組所表示的平面區(qū)域?yàn)閳D1中的陰影部分.
解方程組得點(diǎn)M的坐標(biāo)為(6,3).
所以,電視臺(tái)每周播出甲連續(xù)劇6次、乙連續(xù)劇3次時(shí)才能使總收視人次最多.
9