欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)

上傳人:Sc****h 文檔編號:119153365 上傳時(shí)間:2022-07-13 格式:DOCX 頁數(shù):26 大?。?.35MB
收藏 版權(quán)申訴 舉報(bào) 下載
備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)_第1頁
第1頁 / 共26頁
備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)_第2頁
第2頁 / 共26頁
備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

26 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《備戰(zhàn)2020年高考數(shù)學(xué) 考點(diǎn)一遍過 考點(diǎn)06 二次函數(shù)與冪函數(shù) 文(含解析)(26頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、考點(diǎn)06二次函數(shù)與冪函數(shù) (1)了解冪函數(shù)的概念. (2)結(jié)合函數(shù)的圖象,了解它們的變化情況. 一、二次函數(shù) 1.二次函數(shù)的概念 形如的函數(shù)叫做二次函數(shù). 2.表示形式 (1)一般式:f(x)=ax2+bx+c(a≠0). (2)頂點(diǎn)式:f(x)=a(x?h)2+k(a≠0),其中(h,k)為拋物線的頂點(diǎn)坐標(biāo). (3)兩根式:f(x)=a(x?x1)(x?x2)(a≠0),其中x1,x2是拋物線與x軸交點(diǎn)的橫坐標(biāo). 3.二次函數(shù)的圖象與性質(zhì) 函數(shù)解析式 圖象(拋物線) 定義域 R 值域 對稱性 函數(shù)圖象關(guān)于直線對稱 頂點(diǎn)坐標(biāo)

2、 奇偶性 當(dāng)b=0時(shí)是偶函數(shù),當(dāng)b≠0時(shí)是非奇非偶函數(shù) 單調(diào)性 在上是減函數(shù); 在上是增函數(shù). 在上是增函數(shù); 在上是減函數(shù). 最值 當(dāng)時(shí), 當(dāng)時(shí), 4.常用結(jié)論 (1)函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)是方程ax2+bx+c=0的實(shí)根. (2)若x1,x2為f(x)=0的實(shí)根,則f(x)在x軸上截得的線段長應(yīng)為|x1?x2|=. (3)當(dāng)且()時(shí),恒有f(x)>0();當(dāng)且()時(shí),恒有f(x)<0(). 二、冪函數(shù) 1.冪函數(shù)的概念 一般地,形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中底數(shù)x為自變量,α為常數(shù). 2.幾個(gè)常見

3、冪函數(shù)的圖象與性質(zhì) 函數(shù) 圖象 定義域 值域 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 非奇非偶函數(shù) 奇函數(shù) 單調(diào)性 在上單調(diào)遞增 在上單調(diào)遞減;在上單調(diào)遞增 在上單調(diào)遞增 在上單調(diào)遞增 在和上單調(diào)遞減 過定點(diǎn) 過定點(diǎn) 過定點(diǎn) 3.常用結(jié)論 (1)冪函數(shù)在上都有定義. (2)冪函數(shù)的圖象均過定點(diǎn). (3)當(dāng)時(shí),冪函數(shù)的圖象均過定點(diǎn),且在上單調(diào)遞增. (4)當(dāng)時(shí),冪函數(shù)的圖象均過定點(diǎn),且在上單調(diào)遞減. (5)冪函數(shù)在第四象限無圖象. 考向一求二次函數(shù)或冪函數(shù)的解析式 1.求二次函數(shù)解析

4、式的方法 求二次函數(shù)的解析式,一般用待定系數(shù)法,其關(guān)鍵是根據(jù)已知條件恰當(dāng)選擇二次函數(shù)解析式的形式.一般選擇規(guī)律如下: 2.求冪函數(shù)解析式的方法 冪函數(shù)的解析式是一個(gè)冪的形式,且需滿足: (1)指數(shù)為常數(shù); (2)底數(shù)為自變量; (3)系數(shù)為1. 典例1若函數(shù)是冪函數(shù),且滿足,則 A. B. C. D.?3 【答案】A 【解析】由題意可設(shè)為常數(shù)), 因?yàn)闈M足,所以,所以, 所以,所以. 故選A. 1.已知冪函數(shù)的圖象經(jīng)過點(diǎn)8,4,則不等式f6x+3≤9的解集為_______. 考向二冪函數(shù)的圖象及性質(zhì)的應(yīng)用 1.冪函數(shù)y=xα的圖象與性質(zhì),由于α值的

5、不同而比較復(fù)雜,一般從兩個(gè)方面考查: ①α的正負(fù):當(dāng)α>0時(shí),圖象過原點(diǎn),在第一象限的圖象上升;當(dāng)α<0時(shí),圖象不過原點(diǎn),在第一象限的圖象下降,反之也成立. ②冪函數(shù)的指數(shù)與圖象特征的關(guān)系 當(dāng)α≠0,1時(shí),冪函數(shù)y=xα在第一象限的圖象特征如下: α α>1 0<α<1 α<0 圖象 特殊點(diǎn) 過(0,0),(1,1) 過(0,0),(1,1) 過(1,1) 凹凸性 下凸 上凸 下凸 單調(diào)性 遞增 遞增 遞減 舉例 y=x2 、 2.利用冪函數(shù)的單調(diào)性比較冪值大小的技巧: 結(jié)合冪值的特點(diǎn)利用指數(shù)冪的運(yùn)算性質(zhì)化成同指數(shù)冪,選擇適當(dāng)?shù)?/p>

6、冪函數(shù),借助其單調(diào)性進(jìn)行比較. 典例2 如圖所示的曲線是冪函數(shù)在第一象限的圖象,已知,相應(yīng)曲線對應(yīng)的值依次為 A. B. C. D. 【答案】B 【解析】結(jié)合冪函數(shù)的單調(diào)性及圖象,易知曲線對應(yīng)的值依次為. 故選B. 2.已知函數(shù)f(x)=(m2-m-1)xm2+2m-3是冪函數(shù),且其圖象與兩坐標(biāo)軸都沒有交點(diǎn),則實(shí)數(shù)m= A.-1 B.2 C.3 D.2或-1 典例3 設(shè),則的大小關(guān)系是 A.a(chǎn)>c>b B.a(chǎn)>b>c C.c>a>b D.b>c>a 【答案】A 【解析】因?yàn)樵谏鲜窃龊瘮?shù),所以 又因?yàn)樵谏鲜菧p函數(shù),所以. 綜上,a>c>b.

7、 故選A. 【名師點(diǎn)睛】同底數(shù)的兩個(gè)數(shù)比較大小,考慮用指數(shù)函數(shù)的單調(diào)性;同指數(shù)的兩個(gè)數(shù)比較大小,考慮用冪函數(shù)的單調(diào)性,有時(shí)需要取中間量. 3.已知,,,則下列結(jié)論成立的是 A. B. C. D. 考向三二次函數(shù)的圖象及性質(zhì)的應(yīng)用 高考對二次函數(shù)圖象與性質(zhì)進(jìn)行單獨(dú)考查的頻率較低,常與一元二次方程、一元二次不等式等知識交匯命題,考查二次函數(shù)圖象與性質(zhì)的應(yīng)用,以選擇題、填空題的形式呈現(xiàn),有時(shí)也出現(xiàn)在解答題中,解題時(shí)要準(zhǔn)確運(yùn)用二次函數(shù)的圖象與性質(zhì),掌握數(shù)形結(jié)合的思想方法.常見類型及解題策略: 1.圖象識別問題 辨析二次函數(shù)的圖象應(yīng)從開口方向、對稱軸、頂點(diǎn)坐標(biāo)以及圖象與坐標(biāo)軸的交點(diǎn)等

8、方面著手討論或逐項(xiàng)排除. 2.二次函數(shù)最值問題的類型及處理思路 (1)類型:a.對稱軸、區(qū)間都是給定的;b.對稱軸動(dòng)、區(qū)間固定;c.對稱軸定、區(qū)間變動(dòng). (2)解決這類問題的思路:抓住“三點(diǎn)一軸”數(shù)形結(jié)合,三點(diǎn)是指區(qū)間的兩個(gè)端點(diǎn)和中點(diǎn),一軸指的是對稱軸,結(jié)合配方法,根據(jù)函數(shù)的單調(diào)性及分類討論的思想即可完成. 3.解決一元二次方程根的分布問題的方法 常借助于二次函數(shù)的圖象數(shù)形結(jié)合來解,一般從:a.開口方向;b.對稱軸位置;c.判別式;d.端點(diǎn)函數(shù)值符號四個(gè)方面分析. 4.求解與二次函數(shù)有關(guān)的不等式恒成立問題 往往先對已知條件進(jìn)行化簡,轉(zhuǎn)化為下面兩種情況: (1)ax2+bx+c>

9、0,a≠0恒成立的充要條件是. (2)ax2+bx+c<0,a≠0恒成立的充要條件是. 另外,也可以采取分離變量法,把問題轉(zhuǎn)化為不等式f(x)>A在區(qū)間D上恒成立,此時(shí)就等價(jià)于在區(qū)間D上f(x)min>A,接下來求出函數(shù)f(x)的最小值;若不等式f(x)

10、要考查二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵. 4.已知函數(shù)fx=4x2-kx-8在5,20上具有單調(diào)性,則實(shí)數(shù)k的取值范圍為 A.-∞,40 B.160,+∞ C.40,160 D.-∞,40∪160,+∞ 典例5 已知函數(shù),若對于任意的都有,則實(shí)數(shù)的取值范圍為. 【答案】 【解析】根據(jù)題意,得 解得. 5.若函數(shù)fx=x2-2x+1在區(qū)間a,a+2上的最小值為4,則a的取值集合為 A.-3,3 B.-1,3 C.-3,3 D.-1,-3,3 1.若冪函數(shù)f(x)的圖象過點(diǎn)(2,2),則函數(shù)y=f(x)+1-x的最大值為 A

11、.1 B. C.2 D. 2.已知,,,則的大小關(guān)系是 A. B. C. D. 3.在區(qū)間內(nèi)任取一實(shí)數(shù),的圖象與軸有公共點(diǎn)的概率為 A. B. C. D. 4.已知,若為奇函數(shù),且在上單調(diào)遞增,則實(shí)數(shù)的值是 A.?1,3 B.,3 C.?1,,3 D.,,3 5.已知函數(shù)f(x)=ax-2+7(a>0且a≠1)的圖象恒過定點(diǎn)P,若定點(diǎn)P在冪函數(shù)g(x)的圖象上,則冪函數(shù)g(x)的圖象是 A. B. C. D. 6.已知函數(shù)的圖象如圖所示,則的大小關(guān)系為 A. B. C. D. 7.已知函數(shù),則 A.,使得 B. C.,使得

12、 D.,使得 8.已知:冪函數(shù)在上單調(diào)遞增;,則是的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 9.已知冪函數(shù)的圖象過點(diǎn),則函數(shù)在區(qū)間上的最小值是 A. B.0 C. D. 10.已知函數(shù)的定義域是R,則實(shí)數(shù)a的取值范圍是 A. B. C. D. 11.已知點(diǎn)在冪函數(shù)的圖象上,設(shè),則的大小關(guān)系為 A. B. C. D. 12.已知函數(shù)(其中,且)在區(qū)間上單調(diào)遞增,則函數(shù)的定義域?yàn)? A. B. C. D. 13.已知函數(shù)既是二次函數(shù)又是冪函數(shù),函數(shù)是上的奇函數(shù),函數(shù),則A.0 B.2018 C.4036

13、 D.4037 14.已知冪函數(shù)(α是實(shí)數(shù))的圖象經(jīng)過點(diǎn),則f(4)的值為____________. 15.已知xα+x-α=25,x>1,α<0,則xα-x-α=____________. 16.若冪函數(shù)f(x)=(m2-2m+1)x2m-1在(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值為____________. 17.已知函數(shù)y=x2-2x+a的定義域?yàn)镽,值域?yàn)閇0,+∞),則實(shí)數(shù)a的取值集合為____________. 18.已知函數(shù),則函數(shù)的最小值是__________. 19.已知實(shí)數(shù)滿足,則的取值范圍是__________. 20.已知二次函數(shù)f(x)的最小值為1,

14、且f(x)=f(2-x),f(0)=3. (1)求f(x)的解析式; (2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍. 21.已知冪函數(shù)f(x)=(m-1)2xm2-4m+3(m∈R)在(0,+∞)上單調(diào)遞增. (1)求m的值及f(x)的解析式; (2)若函數(shù)g(x)=-3f(x)2+2ax+1-a在[0,2]上的最大值為3,求實(shí)數(shù)a的值. 22.已知fx=-4x2+4ax-4a-a2. (1)當(dāng)a=1,x∈1,3時(shí),求函數(shù)fx的值域

15、; (2)若函數(shù)fx在區(qū)間0,1內(nèi)有最大值-5,求a的值. 23.已知函數(shù),其中為常數(shù). (1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍; (2)若,都有,求實(shí)數(shù)的取值范圍. 1.(2019年高考北京文數(shù))下列函數(shù)中,在區(qū)間(0,+)上單調(diào)遞增的是 A. B.y= C. D. 2.(2017年高考浙江卷)若函數(shù)f(x)=x2+ ax+b在區(qū)間[0,1]上的最大值是M,最小值是m,則M – m A.與a有關(guān),且與b有關(guān) B.與a有關(guān),但與b無關(guān) C.與a無關(guān),且與b無關(guān) D.與a無

16、關(guān),但與b有關(guān) 3.(2016年高考新課標(biāo)III卷文科)已知,則 A. B. C. D. 4.(2019年高考浙江卷)已知,函數(shù),若存在,使得,則實(shí)數(shù)的最大值是___________. 5.(2018年高考天津卷文科)已知a∈R,函數(shù)若對任意x∈[–3,+),f(x)≤恒成立,則a的取值范圍是__________. 6.(2017年高考北京卷文科)已知,,且x+y=1,則的取值范圍是_________. 變式拓展 1.【答案】-5,4 【解析】由題意知,故, 由于fx=x23=3x2為R上的偶函數(shù)且在0,+∞上單調(diào)遞增, f6x+3≤9即為f6x+3≤f27,

17、所以6x+3≤27,解得-5≤x≤4. 2.【答案】A 【解析】∵函數(shù)f(x)=(m2-m-1)xm2+2m-3是冪函數(shù), ∴m2-m-1=1,解得:m=2或m=-1, 當(dāng)m=2時(shí),,其圖象與兩坐標(biāo)軸有交點(diǎn),不符合題意; 當(dāng)m=-1時(shí),,其圖象與兩坐標(biāo)軸都沒有交點(diǎn),符合題意, 故m=-1. 故選A. 3.【答案】A 【解析】,, ,,即, , 故. 選A. 【名師點(diǎn)睛】本題主要考查了比較大小問題,其中解答中熟練運(yùn)用冪函數(shù)與指數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.求解時(shí),根據(jù)冪函數(shù)在上為單調(diào)遞增函數(shù),得出,再根據(jù)指數(shù)函數(shù)的性質(zhì)得,即可得到結(jié)論.

18、4.【答案】D 【解析】因?yàn)楹瘮?shù)fx=4x2-kx-8在5,20上具有單調(diào)性,所以或,解得k≥160或k≤40. 故實(shí)數(shù)k的取值范圍為-∞,40∪160,+∞. 選D. 5.【答案】C 【解析】∵函數(shù)f(x)=x2﹣2x+1=(x﹣1)2, ∴函數(shù)f(x)圖象的對稱軸為x=1, ∵在區(qū)間[a,a+2]上的最小值為4, ∴當(dāng)1≤a時(shí),函數(shù)的最小值為f(a)=(a﹣1)2=4,則a=﹣1(舍去)或a=3; 當(dāng)a+2≤1,即a≤﹣1時(shí),函數(shù)的最小值為f(a+2)=(a+1)2=4,則a=1(舍去)或a=﹣3; 當(dāng)a<1<a+2,即-1

19、 故滿足條件的a的取值集合為{﹣3,3}. 故選C. 考點(diǎn)沖關(guān) 1.【答案】B 【解析】設(shè)(是常數(shù)), ∵f(x)的圖象過點(diǎn)(2,2),∴=2, 則, 則f(x)=x,y=x+1-x=-x-122+54, 故其最大值為. 故選B. 2.【答案】C 【解析】易知冪函數(shù)在上是減函數(shù), ,,即. 故選C. 3.【答案】D 【解析】∵函數(shù)的圖象與軸有公共點(diǎn),∴,解得或. 由幾何概型概率公式可得所求概率為. 故選D. 【名師點(diǎn)睛】解答幾何概型問題的關(guān)鍵在于弄清題中的考察對象和對象的活動(dòng)范圍,當(dāng)考察對象為點(diǎn),且點(diǎn)的活動(dòng)范圍在線段上時(shí),可用線段長度比計(jì)算,然后根據(jù)公式

20、計(jì)算即可.求解本題時(shí),先由二次函數(shù)的判別式大于等于零求出實(shí)數(shù)的取值范圍,再根據(jù)幾何概型概率公式求解. 4.【答案】B 【解析】因?yàn)樵谏蠁握{(diào)遞增,所以,排除選項(xiàng)A,C; 當(dāng)時(shí),為非奇非偶函數(shù),不滿足條件,排除D, 故選B. 【名師點(diǎn)睛】分別研究五個(gè)冪函數(shù)的奇偶性與單調(diào)性,從而可得結(jié)果.特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學(xué)一種常見的解題思路和方法,這種方法既可以提高做題速度和效率,又能提高準(zhǔn)確性,這種方法主要適合下列題型:(1)求值問題(可將選項(xiàng)逐個(gè)驗(yàn)證);(2)求范圍問題(可在選項(xiàng)中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點(diǎn)排除);(4)解方程、

21、求解析式、求通項(xiàng)、求前項(xiàng)和公式問題等等. 5.【答案】D 【解析】由題意知,f2=a2-2+7=8,則定點(diǎn)P2,8, 設(shè)冪函數(shù)為gx=xα(是常數(shù)), 將P2,8代入得2α=8,故α=3, 即gx=x3,圖象為D中的圖象. 故選D. 6.【答案】A 【解析】由圖象可知,,得. 故選A. 【名師點(diǎn)睛】本題主要結(jié)合函數(shù)圖象,考查指數(shù)函數(shù)和冪函數(shù)的比較大小問題,解決本題的關(guān)鍵是尋找中間值. 7.【答案】B 【解析】,函數(shù)的定義域?yàn)?,函?shù)的值域?yàn)?,并且函?shù)是單調(diào)遞增函數(shù),這樣A不成立,C根據(jù)單調(diào)性可知也不成立,D應(yīng)改為,故選B. 8.【答案】A 【解析】由題意,命題冪函數(shù)在

22、上單調(diào)遞增,則,又, 所以是的充分不必要條件. 故選A. 9.【答案】B 【解析】由題設(shè)得, 故在上單調(diào)遞增, 則當(dāng)時(shí)取最小值,最小值為. 應(yīng)選B. 10.【答案】B 【解析】由題意,要使函數(shù)的定義域是, 則對任意實(shí)數(shù)都成立, 當(dāng)時(shí)顯然成立; 當(dāng)時(shí),需,解得. 綜上,的取值范圍為. 故選B. 11.【答案】D 【解析】由題可得:,解得:, 所以, 因?yàn)?,,? 又, 所以, 由在上單調(diào)遞增,可得, 所以. 故選D. 12.【答案】B 【解析】∵函數(shù)(其中,且)在區(qū)間上單調(diào)遞增, ∴ 令. 故選B. 13.【答案】D 【解析】因?yàn)楹瘮?shù)

23、既是二次函數(shù)又是冪函數(shù),所以, 因此,因此 故選D. 14.【答案】2 【解析】因?yàn)閮绾瘮?shù)的圖象過點(diǎn),所以,解得, 所以,則. 故答案為2. 15.【答案】 【解析】由xα+x-α=25,得(xα+x-α)2=x2α+x-2α+2=20,解得x2α+x-2α=18, 則(xα-x-α)2=x2α+x-2α-2=18-2=16, 因?yàn)閤>1,α<0,所以根據(jù)冪函數(shù)的單調(diào)性,可得xα

24、或m=2. 當(dāng)m=0時(shí),f(x)=x-1,在(0,+∞)上為減函數(shù),不符合題意; 當(dāng)m=2時(shí),f(x)=x3,在(0,+∞)上為增函數(shù),符合題意. 故答案為2. 17.【答案】{1} 【解析】因?yàn)閤2-2x+a=(x-1)2+a-1,y=(x-1)2+a-1的定義域?yàn)镽,值域?yàn)閇0,+∞),所以a-1=0,即a=1,所以a的取值集合為{1}. 故答案為{1}. 18.【答案】 【解析】設(shè),則可化為 當(dāng)時(shí),有最小值, 即時(shí),函數(shù)的最小值是. 故答案為. 【名師點(diǎn)睛】求函數(shù)最值的常見方法有: ①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)值域,其關(guān)鍵在于正確化成完全平

25、方式,并且一定要先確定其定義域; ②換元法:常用代數(shù)或三角代換法,用換元法求值域時(shí)需認(rèn)真分析換元參數(shù)的范圍變化; ③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時(shí),要注意基本不等式的使用條件“一正、二定、三相等”; ④單調(diào)性法:首先確定函數(shù)的定義域,然后準(zhǔn)確地找出其單調(diào)區(qū)間,最后再根據(jù)其單調(diào)性求出函數(shù)的最值; ⑤圖象法:畫出函數(shù)圖象,根據(jù)圖象的最高和最低點(diǎn)求最值. 19.【答案】 【解析】由,可得. 又,所以,解得. 所以. 結(jié)合, 可得. 故答案為. 【名師點(diǎn)睛】本題主要考查求二次函數(shù)值域,需要注意定義域,屬于中檔題.求解時(shí),先由得,再由,利用二次函數(shù)性質(zhì)

26、求值域即可. 20.【答案】(1)f(x)=2x2-4x+3;(2)(-∞,-1). 【解析】(1)根據(jù)題意,f(x)是二次函數(shù),且f(x)=f(2-x), 可得函數(shù)f(x)的對稱軸為x=1, 又其最小值為1,可設(shè)f(x)=a(x-1)2+1, 又因?yàn)閒(0)=3,則a+1=3,解可得a=2, 則f(x)=2(x-1)2+1=2x2-4x+3. (2)根據(jù)題意,2x2-4x+3>2x+2m+1在[-1,1]上恒成立,化簡得m

27、-1, 故m的取值范圍為(-∞,-1). 21.【答案】(1)f(x)=x3;(2)a=±2. 【解析】(1)冪函數(shù)fx=(m-1)2xm2-4m+3m∈R在0,+∞上單調(diào)遞增, 故, 解得:m=0, 故fx=x3. (2)由于fx=x3, 所以函數(shù)gx=-3f(x)2+2ax+1-a=-x2+2ax+1-a, 則函數(shù)圖象為開口方向向下的拋物線,對稱軸為x=a, 由于在0,2上的最大值為3, ①當(dāng)a≥2時(shí),gx在0,2上單調(diào)遞增, 故:g(x)max=g2=3a-3=3, 解得a=2. ②當(dāng)a≤0時(shí),gx在0,2上單調(diào)遞減, 故:g(x)max=g0=1-a=3,

28、 解得:a=-2. ③當(dāng)0

29、, ①當(dāng)12a≥1,即a≥2時(shí),fx在0,1上單調(diào)遞增,函數(shù)的最大值為f1=-4-a2. 令-4-a2=-5,得a2=1,a=±1<2(舍去). ②當(dāng)0<12a<1,即0

30、 (2)因?yàn)楹愠闪ⅲ? 所以,整理得,解得, 因此,的取值范圍是. 【名師點(diǎn)睛】(1)根據(jù)二次函數(shù)性質(zhì)得對稱軸不在區(qū)間內(nèi),解不等式可得實(shí)數(shù)的取值范圍.(2)根據(jù)二次函數(shù)圖象可得在x軸上方,即,解得實(shí)數(shù)的取值范圍. 研究二次函數(shù)單調(diào)性的思路: ①二次函數(shù)的單調(diào)性在其圖象對稱軸的兩側(cè)不同,因此研究二次函數(shù)的單調(diào)性時(shí)要依據(jù)其圖象的對稱軸進(jìn)行分類討論. ②若已知f(x)=ax2+bx+c(a>0)在區(qū)間A上單調(diào)遞減(單調(diào)遞增),則A?(A?),即區(qū)間A一定在函數(shù)對稱軸的左側(cè)(右側(cè)). 直通高考 1.【答案】A 【解析】易知函數(shù),在區(qū)間上單調(diào)遞減, 函數(shù)在區(qū)間上單調(diào)遞增. 故選A

31、. 【名師點(diǎn)睛】本題考查簡單的指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性,注重對重要知識、基礎(chǔ)知識的考查,蘊(yùn)含數(shù)形結(jié)合思想,屬于容易題. 2.【答案】B 【解析】因?yàn)樽钪翟谥腥?,所以最值之差一定與無關(guān). 故選B. 【名師點(diǎn)睛】對于二次函數(shù)的最值或值域問題,通常先判斷函數(shù)圖象對稱軸與所給自變量閉區(qū)間的關(guān)系,結(jié)合圖象,當(dāng)函數(shù)圖象開口向上時(shí),若對稱軸在區(qū)間的左邊,則函數(shù)在所給區(qū)間內(nèi)單調(diào)遞增;若對稱軸在區(qū)間的右邊,則函數(shù)在所給區(qū)間內(nèi)單調(diào)遞減;若對稱軸在區(qū)間內(nèi),則函數(shù)圖象頂點(diǎn)的縱坐標(biāo)為最小值,區(qū)間端點(diǎn)距離對稱軸較遠(yuǎn)的一端取得函數(shù)的最大值. 3.【答案】A 【解析】因?yàn)?,? 又函數(shù)在上是增函數(shù),

32、 所以,即. 故選A. 【技巧點(diǎn)撥】比較指數(shù)的大小常常根據(jù)三個(gè)數(shù)的結(jié)構(gòu),聯(lián)系相關(guān)的指數(shù)函數(shù)與對數(shù)函數(shù)、冪函數(shù)的單調(diào)性來判斷,如果兩個(gè)數(shù)指數(shù)相同,底數(shù)不同,則考慮冪函數(shù)的單調(diào)性;如果指數(shù)不同,底數(shù)相同,則考慮指數(shù)函數(shù)的單調(diào)性;如果涉及對數(shù),則聯(lián)系對數(shù)的單調(diào)性來解決. 4.【答案】 【解析】存在,使得, 即有, 化為, 可得, 即, 由,可得. 則實(shí)數(shù)的最大值是. 【名師點(diǎn)睛】本題考查函數(shù)的解析式及二次函數(shù),結(jié)合函數(shù)的解析式可得,去絕對值化簡,結(jié)合二次函數(shù)的最值及不等式的性質(zhì)可求解. 5.【答案】[,2] 【解析】分類討論: ①當(dāng)時(shí),即:,整理可得:,由恒成立的條件可知

33、:,結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)時(shí),,則; ②當(dāng)時(shí),即:,整理可得:,由恒成立的條件可知:, 結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)或時(shí),,則. 綜合①②,可得的取值范圍是. 【名師點(diǎn)睛】由題意分類討論:和兩種情況,結(jié)合恒成立的條件整理計(jì)算即可求得最終結(jié)果.對于恒成立問題,常用到以下兩個(gè)結(jié)論:(1)a≥f(x)恒成立?a≥f(x)max;(2)a≤f(x)恒成立?a≤f(x)min.有關(guān)二次函數(shù)的問題,數(shù)形結(jié)合,密切聯(lián)系圖象是探求解題思路的有效方法.一般從:①開口方向;②對稱軸位置;③判別式;④端點(diǎn)函數(shù)值符號四個(gè)方面分析. 6.【答案】 【解析】, 所以當(dāng)時(shí),取最大值1; 當(dāng)時(shí),取最小值. 因此的取值范圍為. 【名師點(diǎn)睛】本題考查了轉(zhuǎn)化與化歸的能力,除了像本題的方法,即轉(zhuǎn)化為二次函數(shù)求取值范圍,也可以轉(zhuǎn)化為幾何關(guān)系求取值范圍,即,表示線段,那么的幾何意義就是線段上的點(diǎn)到原點(diǎn)距離的平方,這樣會(huì)更加簡單. 26

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!