(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 概率與統(tǒng)計 第2講 統(tǒng)計與統(tǒng)計案例練習(xí) 理 新人教A版
《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 概率與統(tǒng)計 第2講 統(tǒng)計與統(tǒng)計案例練習(xí) 理 新人教A版》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 概率與統(tǒng)計 第2講 統(tǒng)計與統(tǒng)計案例練習(xí) 理 新人教A版(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講 統(tǒng)計與統(tǒng)計案例 [A組 夯基保分專練] 一、選擇題 1.(2019·福州市質(zhì)量檢測)某校學(xué)生會為了了解本校高一1 000名學(xué)生的課余時間參加傳統(tǒng)文化活動的情況,隨機抽取50名學(xué)生進(jìn)行調(diào)查.將數(shù)據(jù)分組整理后,列表如下: 參加場數(shù) 0 1 2 3 4 5 6 7 參加人數(shù)占調(diào)查 人數(shù)的百分比 8% 10% 20% 26% 18% m% 4% 2% 以下四個結(jié)論中正確的是( ) A.表中m的數(shù)值為10 B.估計該校高一學(xué)生參加傳統(tǒng)文化活動次數(shù)不高于2場的學(xué)生約為180人 C.估計該校高一學(xué)生參加傳統(tǒng)文化活動次數(shù)不低于4場的學(xué)生約為36
2、0人 D.若采用系統(tǒng)抽樣方法進(jìn)行調(diào)查,從該校高一1 000名學(xué)生中抽取容量為50的樣本,則分段間隔為25 解析:選C.A中的m值應(yīng)為12;B中應(yīng)為380人;C是正確的;D中的分段間隔應(yīng)為20,故選C. 2.(2019·湖南省五市十校聯(lián)考)在某次賽車中,50名參賽選手的成績(單位:min)全部介于13到18之間(包括13和18),將比賽成績分為五組:第一組[13,14),第二組[14,15),…,第五組[17,18],其頻率分布直方圖如圖所示,若成績在[13,15)內(nèi)的選手可獲獎,則這50名選手中獲獎的人數(shù)為( ) A.39 B.35 C.15 D.11 解析
3、:選D.由頻率分布直方圖知成績在[15,18]內(nèi)的頻率為(0.38+0.32+0.08)×1=0.78,所以成績在[13,15)內(nèi)的頻率為1-0.78=0.22,則成績在[13,15)內(nèi)的選手有50×0.22=11(人),即這50名選手中獲獎的人數(shù)為11,故選D. 3.(2019·武漢市調(diào)研測試)某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機抽查部分學(xué)生,了解到上學(xué)方式主要有:A—結(jié)伴步行,B—自行乘車,C—家人接送,D—其他方式.并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,求本次抽查的學(xué)生中A類人數(shù)是( ) A.30 B.40 C.42 D.48 解
4、析:選A.由條形統(tǒng)計圖知,B—自行乘車上學(xué)的有42人,C—家人接送上學(xué)的有30人,D—其他方式上學(xué)的有18人,采用B,C,D三種方式上學(xué)的共90人,設(shè)A—結(jié)伴步行上學(xué)的有x人,由扇形統(tǒng)計圖知,A—結(jié)伴步行上學(xué)與B—自行乘車上學(xué)的學(xué)生占60%,所以=,解得x=30,故選A. 4.(2019·廣東六校第一次聯(lián)考)某單位為了落實“綠水青山就是金山銀山”理念,制定節(jié)能減排的目標(biāo),先調(diào)查了用電量y(單位:kW·h)與氣溫x(單位:℃)之間的關(guān)系,隨機選取了4天的用電量與當(dāng)天氣溫,并制作了如下對照表: x(單位:℃) 17 14 10 -1 y(單位:kW·h) 24 34 38 a
5、 由表中數(shù)據(jù)得線性回歸方程=-2x+60,則a的值為( ) A.48 B.62 C.64 D.68 解析:選C.由題意,得==10,==.樣本點的中心(,)在回歸直線=-2x+60上,代入線性回歸方程可得=-20+60,解得a=64,故選C. 5.(2019·貴陽市第一學(xué)期監(jiān)測)如圖的折線圖是某超市2018年一月份至五月份的營業(yè)額與成本數(shù)據(jù),根據(jù)該折線圖,下列說法正確的是( ) A.該超市2018年的前五個月中三月份的利潤最高 B.該超市2018年的前五個月的利潤一直呈增長趨勢 C.該超市2018年的前五個月的利潤的中位數(shù)為0.8萬元 D.該超市2018年前五個月
6、的總利潤為3.5萬元 解析:選D.第1個月利潤為3-2.5=0.5(萬元),第2個月利潤為3.5-2.8=0.7(萬元),第3個月利潤為3.8-3=0.8(萬元),第4個月利潤為4-3.5=0.5(萬元),第5個月利潤為5-4=1(萬元),其中五月份利潤最高,為1萬元,所以A錯誤.第4個月利潤相比第3個月在下降,所以B錯誤.前五個月的利潤的中位數(shù)為0.7萬元,所以C錯誤,前五個月的總利潤為0.5+0.7+0.8+0.5+1=3.5(萬元),所以D正確. 6.(2019·鄭州市第二次質(zhì)量預(yù)測)將甲、乙兩個籃球隊各5場比賽的得分?jǐn)?shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是( )
7、 A.甲隊平均得分高于乙隊的平均得分 B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù) C.甲隊得分的方差大于乙隊得分的方差 D.甲、乙兩隊得分的極差相等 解析:選C.由題中莖葉圖得,甲隊的平均得分甲==29,乙隊的平均得分乙==30,甲<乙,選項A不正確;甲隊得分的中位數(shù)為29,乙隊得分的中位數(shù)為30,甲隊得分的中位數(shù)小于乙隊得分的中位數(shù),選項B不正確;甲隊得分的方差s=×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=,乙隊得分的方差s=×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s>s,
8、選項C正確;甲隊得分的極差為31-26=5,乙隊得分的極差為32-28=4,兩者不相等,選項D不正確.故選C. 二、填空題 7.如圖是某學(xué)校一名籃球運動員在10場比賽中所得分?jǐn)?shù)的莖葉圖,則該運動員在這10場比賽中得分的中位數(shù)為________. 解析:把10場比賽的所得分?jǐn)?shù)按順序排列為5,8,9,12,14,16,16,19,21,24,中間兩個為14與16,故中位數(shù)為=15. 答案:15 8.已知一組數(shù)據(jù)x1,x2,…,xn的方差為2,若數(shù)據(jù)ax1+b,ax2+b,…,axn+b(a>0)的方差為8,則a的值為________. 解析:根據(jù)方差的性質(zhì)可知,a2×2=8,故a=
9、2. 答案:2 9.給出下列四個命題: ①某班級一共有52名學(xué)生,現(xiàn)將該班學(xué)生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,如果7號、33號、46號同學(xué)在樣本中,那么樣本中另一位同學(xué)的編號為23; ②一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同; ③若一組數(shù)據(jù)a,0,1,2,3的平均數(shù)為1,則其標(biāo)準(zhǔn)差為2; ④根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為=+x,其中=2,=1,=3,則=1. 其中真命題有________(填序號). 解析:在①中,由系統(tǒng)抽樣知抽樣的分段間隔為52÷4=13,故抽取的樣本的編號分別為7號、20號、33號、46號,
10、故①是假命題;在②中,數(shù)據(jù)1,2,3,3,4,5的平均數(shù)為(1+2+3+3+4+5)=3,中位數(shù)為3,眾數(shù)為3,都相同,故②是真命題;在③中,因為樣本的平均數(shù)為1,所以a+0+1+2+3=5,解得a=-1,故樣本的方差為[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,標(biāo)準(zhǔn)差為,故③是假命題;在④中,回歸直線方程為=x+2,又回歸直線過點(,),把(1,3)代入回歸直線方程=x+2,得=1,故④是真命題. 答案:②④ 三、解答題 10.(2019·蘭州市診斷考試)“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名
11、片,隨著全民運動健康意識的提高,馬拉松運動不僅在蘭州,而且在全國各大城市逐漸興起,參與馬拉松訓(xùn)練與比賽的人數(shù)逐年增加.為此,某市對人們參加馬拉松運動的情況進(jìn)行了統(tǒng)計調(diào)查.其中一項調(diào)查是調(diào)查人員從參與馬拉松運動的人中隨機抽取200人,對其每周參與馬拉松長跑訓(xùn)練的天數(shù)進(jìn)行統(tǒng)計,得到以下統(tǒng)計表: 平均每周進(jìn)行長跑訓(xùn)練天數(shù) 不大于2 3或4 不少于5 人數(shù) 30 130 40 若某人平均每周進(jìn)行長跑訓(xùn)練天數(shù)不少于5,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”. (1)經(jīng)調(diào)查,該市約有2萬人參與馬拉松運動,試估計其中“熱烈參與者”的人數(shù); (2)根據(jù)上表的數(shù)據(jù),填寫下列2×2
12、列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“熱烈參與馬拉松”與性別有關(guān)? 熱烈參與者 非熱烈參與者 總計 男 140 女 55 總計 附:K2=(n為樣本容量) P(K2≥k0) 0.500 0.400 0.250 0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 解:(1)以200人中“熱烈參與者”的頻率作為概率
13、,則該市“熱烈參與者”的人數(shù)約為20 000×=4 000. (2)2×2列聯(lián)表為 熱烈參與者 非熱烈參與者 總計 男 35 105 140 女 5 55 60 總計 40 160 200 K2=≈7.292>6.635, 故能在犯錯誤的概率不超過0.01的前提下認(rèn)為“熱烈參與馬拉松”與性別有關(guān). 11.(2019·武漢市調(diào)研測試)中共十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加. 為了更好地制定2019年關(guān)于加快提升農(nóng)民年收入,力爭早
14、日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收入(單位:千元)并制成如下頻率分布直方圖: (1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示). (2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入X服從正態(tài)分布N(μ,σ2),其中μ近似為年平均收入,σ2近似為樣本方差s2,經(jīng)計算得s2=6.92.利用該正態(tài)分布,解決下列問題: (i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元? (ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”
15、的落實情況,扶貧辦隨機走訪了1 000位農(nóng)民.若每個農(nóng)民的年收入相互獨立,問:這1 000位農(nóng)民中年收入不少于12.14千元的人數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式
≈2.63,若X~N(μ,σ2),則
①P(μ-σ
16、 4, μ-σ≈17.40-2.63=14.77, 即最低年收入大約為14.77千元. (ii)由P(X≥12.14)=P(X≥μ-2σ)≈0.5+≈0.977 3,得每個農(nóng)民的年收入不少于12.14千元的事件的概率為0.977 3,記這1 000位農(nóng)民中年收入不少于12.14千元的人數(shù)為ξ,則ξ~B(103,p),其中p=0.977 3,于是恰好有k位農(nóng)民的年收入不少于12.14千元的事件的概率是P(ξ=k)=Ck103pk(1-p)103-k, 從而由=>1,得k<1 001p, 由=>1,得k>1 001p-1, 而1 001p=978.277 3, 所以,977.277
17、3 18、與難度的關(guān)系,調(diào)取了該校上一屆高三6次考試的成績分析數(shù)據(jù),得到下表:
考試序號
1
2
3
4
5
6
難度x
0.65
0.71
0.73
0.76
0.77
0.82
區(qū)分度y
0.12
0.16
0.16
0.19
0.20
0.13
①用公式r=計算區(qū)分度y與難度x之間的相關(guān)系數(shù)r(精確到0.001);
②判斷y與x之間相關(guān)關(guān)系的強與弱,并說明是否適宜用線性回歸模型擬合y與x之間的關(guān)系.
參考數(shù)據(jù):xiyi=0.713 4, ≈0.009 2.
解:(1)由莖葉圖知,實驗班這10人的數(shù)學(xué)總成績?yōu)?60分,普通班這10人的數(shù)學(xué)總成績?yōu)?0 19、0分,
故這20人的數(shù)學(xué)平均成績?yōu)椋?8(分),由此估計這4個班的平均分為78分,
所以難度==0.78.
由=86估計實驗班的平均分為86分,由=70估計普通班的平均分為70分,
所以區(qū)分度==0.16.
(2)①由于 (xi-)(yi-)
= (xiyi-xi-yi+)
=xiyi-xi-yi+n
=xiyi-n?。璶 +n
=xiyi-n ,
且xiyi=0.713 4,
≈0.009 2,
6?。?×0.74×0.16=0.710 4,
所以r=
=≈≈0.326.
②由于r≈0.326∈[0.30,0.75),故兩者之間相關(guān)性非常一般,不適宜用線性回 20、歸模型擬合y與x之間的關(guān)系,即使用線性回歸模型來擬合,效果也不理想.
[B組 大題增分專練]
1.(2019·重慶市七校聯(lián)合考試)“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點點滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:mm)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
(1)“梅實初黃暮雨深”,請用樣本平均數(shù)估計Q鎮(zhèn)明年梅雨季節(jié)的降雨量;
(2)“江南梅雨無限愁”,Q鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較 21、大(把握超過八成),而乙品種楊梅2009~2018年的畝產(chǎn)量(單位:kg)與降雨量的發(fā)生頻數(shù)(年)如2×2列聯(lián)表所示(部分?jǐn)?shù)據(jù)缺失),請你幫助老李排解憂愁,他來年應(yīng)該種植哪個品種的楊梅受降雨量影響更?。?完善列聯(lián)表,并說明理由)
降雨量
畝產(chǎn)量
[200,400)
[100,200)∪[400,500]
總計
<600
2
≥600
1
總計
10
附:K2=,其中n=a+b+c+d.
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
k0
0.455
0.708
1.323
2.072
2.706 22、
解:(1)頻率分布直方圖中第四組的頻率為1-100×(0.002+0.004+0.003)=0.1.
所以用樣本平均數(shù)估計Q鎮(zhèn)明年梅雨季節(jié)的降雨量為
150×0.2+250×0.4+350×0.3+450×0.1=30+100+105+45=280(mm).
(2)根據(jù)頻率分布直方圖可知,降雨量在[200,400)內(nèi)的頻數(shù)為10×100×(0.003+0.004)=7.
進(jìn)而完善列聯(lián)表如下.
降雨量
畝產(chǎn)量
[200,400)
[100,200)∪[400,500]
總計
<600
2
2
4
≥600
5
1
6
總計
7
3
10
K2 23、==≈1.270<1.323.
故認(rèn)為乙品種楊梅的畝產(chǎn)量與降雨量有關(guān)的把握不足75%.而甲品種楊梅受降雨量影響的把握超過八成,故老李來年應(yīng)該種植乙品種楊梅受降雨量影響更?。?
2.(2019·佛山模擬)表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績:
學(xué)號
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
數(shù)學(xué)
117
128
96
113
136
139
124
124
121
115
115
123
125
117
123
122
132
24、
129
96
105
106
120
物理
80
84
83
85
89
81
91
78
85
91
72
76
87
82
79
82
84
89
63
73
77
45
學(xué)號
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
數(shù)學(xué)
108
137
87
95
108
117
104
128
125
74
81
135
101
97
116
102
76
100
6 25、2
86
120
101
物理
76
80
71
57
72
65
69
79
0
55
56
77
63
70
75
63
59
64
42
62
77
65
用這44人的兩科成績制作如下散點圖:
學(xué)號為22號的A同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號為31號的B同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將A,B兩同學(xué)的成績(對應(yīng)于圖中A,B兩點)剔除后,用剩下的42個同學(xué)的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標(biāo):數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績x 26、與物理成績y的相關(guān)系數(shù)r=0.822 2,回歸直線l(如圖所示)的方程為=0.500 6x+18.68.
(1)若不剔除A,B兩同學(xué)的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學(xué)成績x與物理成績y的相關(guān)系數(shù)為r0,回歸直線為l0,試分析r0與r的大小關(guān)系,并在圖中畫出回歸直線l0的大致位置.
(2)如果B同學(xué)參加了這次物理考試,估計B同學(xué)的物理分?jǐn)?shù)(精確到個位).
(3)就這次考試而言,學(xué)號為16號的C同學(xué)數(shù)學(xué)與物理哪個學(xué)科成績要好一些?(通常為了比較某個學(xué)生不同學(xué)科的成績水平,可按公式Zi=統(tǒng)一化成標(biāo)準(zhǔn)分再進(jìn)行比較,其中xi為學(xué)科原始成績,為學(xué)科平均分,s為學(xué)科標(biāo)準(zhǔn)差)
解:(1)r0 27、 28、122分,物理原始成績?yōu)?2分,
則數(shù)學(xué)標(biāo)準(zhǔn)分Z16===≈0.63,
物理標(biāo)準(zhǔn)分Z′16===≈0.72,
因為0.72>0.63,所以C同學(xué)物理成績比數(shù)學(xué)成績要好一些.
3.(2019·濟(jì)南市模擬考試)某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯(lián)安裝,二級過濾器與三級過濾器為串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立),三級濾芯無需更換.若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個80元.二級濾芯每個160元.若客戶在使用過程中單 29、獨購買濾芯,則一級濾芯每個200元,二級濾芯每個400元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖1是根據(jù)200個一級過濾器更換的濾芯個數(shù)制成的柱狀圖,表1是根據(jù)100個二級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表.
二級濾芯更換的個數(shù)
5
6
頻數(shù)
60
40
表1
以200個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以100個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為30的概率;
(2 30、)記X表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級濾芯總數(shù),求X的分布列及數(shù)學(xué)期望;
(3)記m,n分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù),若m+n=28,且n∈{5,6},以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定m,n的值.
解:(1)由題意可知,若一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為30,則該套凈水系統(tǒng)中的兩個一級過濾器均需更換12個濾芯,二級過濾器需要更換6個濾芯.
設(shè)“一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為30”為事件A,因為一個一級過濾器需要更換12個濾芯的概率為0.4,二級過濾器需要更 31、換6個濾芯的概率為0.4,所以P(A)=0.4×0.4×0.4=0.064.
(2)由柱狀圖可知,
一個一級過濾器需要更換的濾芯個數(shù)為10,11,12,對應(yīng)的概率分別為0.2,0.4,0.4,由題意,X可能的取值為20,21,22,23,24,并且P(X=20)=0.2×0.2=0.04,
P(X=21)=0.2×0.4×2=0.16,
P(X=22)=0.4×0.4+0.2×0.4×2=0.32,
P(X=23)=0.4×0.4×2=0.32,
P(X=24)=0.4×0.4=0.16.
所以X的分布列為
X
20
21
22
23
24
P
0.04
0.1 32、6
0.32
0.32
0.16
E(X)=20×0.04+21×0.16+22×0.32+23×0.32+24×0.16=22.4.
(3)因為m+n=28,n∈{5,6},所以若m=22,n=6,
則該客戶在十年使用期內(nèi)購買各級濾芯所需總費用的期望值為
22×80+200×0.32+400×0.16+6×160=2 848.
若m=23,n=5,
則該客戶在十年使用期內(nèi)購買各級濾芯所需總費用的期望值為
23×80+200×0.16+5×160+400×0.4=2 832.
故m,n的值分別為23,5.
4.某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的 33、資料顯示,該地周光照量X(單位:小時)都在30小時以上,其中不足50小時的有5周,不低于50小時且不超過70小時的有35周,超過70小時的有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量y(千克)與使用某種液體肥料的質(zhì)量x(千克)之間的關(guān)系為如圖所示的折線圖.
(1)依據(jù)折線圖,是否可用線性回歸模型擬合y與x的關(guān)系?請計算相關(guān)系數(shù)r并加以說明(精確到0.01);(若|r|>0.75,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運行臺數(shù)受周光照量X限制,并有如下關(guān)系:
周光照量X(單位:小時)
30< 34、X<50
50≤X≤70
X>70
光照控制儀運行臺數(shù)
3
2
1
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3 000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1 000元.以頻率作為概率,商家欲使周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?
附相關(guān)系數(shù)公式:r=,
參考數(shù)據(jù):≈0.55,≈0.95.
解:(1)由已知數(shù)據(jù)可得==5,==4.
因為(xi-)(yi-)=(-3)×(-1)+0+0+0+3×1=6,
==2,
==,
所以相關(guān)系數(shù)r===≈0.95.
因為|r|>0.75,所以可用線性回歸模型擬合y與x的關(guān)系.
(2)記商家周總利 35、潤為Y元,由條件可知至少需安裝1臺,最多安裝3臺光照控制儀.
①安裝1臺光照控制儀可獲得周總利潤3 000元.
②安裝2臺光照控制儀的情形:
當(dāng)X>70時,只有1臺光照控制儀運行,此時周總利潤Y=3 000-1 000=2 000(元),P(Y=2 000)==0.2,
當(dāng)30 36、70時,只有1臺光照控制儀運行,此時周總利潤
Y=1×3 000-2×1 000=1 000(元).
P(Y=1 000)==0.2.
當(dāng)50≤X≤70時,有2臺光照控制儀運行,此時周總利潤
Y=2×3 000-1×1 000=5 000(元),
P(Y=5 000)==0.7,
當(dāng)30
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火力發(fā)電廠各設(shè)備的主要作用大全
- 3.高壓電工考試判斷練習(xí)題含答案
- 企業(yè)電氣防爆知識
- 13 低壓電工電工作業(yè)模擬考試題庫試卷含答案
- 電氣設(shè)備維修的十項原則
- 2.電氣電纜與直流模擬考試復(fù)習(xí)題含答案
- 電氣節(jié)能措施總結(jié)
- 2.電氣電機(一)模擬考試復(fù)習(xí)題含答案
- 接地電阻測量原理與測量方法
- 3.高壓電工作業(yè)模擬考試題庫試卷含答案
- 礦山維修電工安全技術(shù)操作規(guī)程
- 電工基礎(chǔ)口訣總結(jié)
- 3.某電廠值長面試題含答案解析
- 電工基礎(chǔ)知識順口溜
- 配電系統(tǒng)詳解