3、下去,第20天所有的蜜蜂都?xì)w巢后,蜂巢中一共有蜜蜂( )
A.420只 B.520只 C.520-54只 D.421-43只
答案B
解析由題意,可設(shè)蜂巢里的蜜蜂數(shù)為數(shù)列{an},則a1=1+4=5,a2=5×4+5=25,…,an=5an-1,故數(shù)列{an}為等比數(shù)列,首項(xiàng)a1=5,公比q=5,故第20天所有的蜜蜂都?xì)w巢后,蜂巢中一共有a20=5×519=520只蜜蜂.
4.設(shè)實(shí)數(shù)列{an},{bn}分別為等差數(shù)列與等比數(shù)列,且a1=b1=4,a4=b4=1,則以下結(jié)論正確的是( )
A.a2>b2 B.a3b5 D.a6>b6
答案A
解析∵a1=4,a
4、4=1,∴d=-1.∵b1=4,b4=1,
又0a5=0,b6=2-43>a6=-1.
5.數(shù)列{an}滿足an+1=λan-1(n∈N*,λ∈R,且λ≠0),若數(shù)列{an-1}是等比數(shù)列,則λ的值等于( )
A.1 B.-1 C.12 D.2
答案D
解析由an+1=λan-1,得an+1-1=λan-2=λan-2λ.
由{an-1}是等比數(shù)列,所以2λ=1,得λ=2.
6.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,a1,S2,5成等差數(shù)列,則數(shù)列{an}的公比q= .?
5、
答案2
解析由題意得2S2=a1+5,即2(1+q)=1+5,q=2.
7.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a3=2-1,a5=2+1,則a32+2a2a6+a3a7= .?
答案8
解析由等比數(shù)列性質(zhì),得a3a7=a52,a2a6=a3a5,
所以a32+2a2a6+a3a7=a32+2a3a5+a52=(a3+a5)2=(2-1+2+1)2=(22)2=8.
8.已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an2-(2an+1-1)an-2an+1=0,則a3= ,an= .?
答案14 12n-1
解析由題意得a2=12,a3=14.
(
6、等比數(shù)列的定義、通項(xiàng)公式)由an2-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因?yàn)閧an}的各項(xiàng)都為正數(shù),所以an+1an=12.故{an}是首項(xiàng)為1,公比為12的等比數(shù)列,因此an=12n-1.
能力提升組
9.已知數(shù)列{an}是等比數(shù)列,a2=2,a5=14,則a1a2+a2a3+…+anan+1=( )
A.16(1-4-n) B.16(1-2-n)
C.323(1-4-n) D.323(1-2-n)
答案C
解析由a5=14=a2·q3=2·q3,解得q=12,可知數(shù)列{anan+1}仍是等比數(shù)列:其首項(xiàng)是a1a2=8,公比為14.
7、
所以a1a2+a2a3+…+anan+1=81-14n1-14=323(1-4-n).
10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=30,S4=120,設(shè)bn=1+log3an,則數(shù)列{bn}的前15項(xiàng)和為( )
A.152 B.135 C.80 D.16
答案B
解析由題設(shè)可得a2+a4=S4-(a1+a3)=90,即q(a1+a3)=90?q=3,所以a1=301+9=3,則an=3·3n-1=3n.所以bn=1+log3(3n)=1+n,則數(shù)列{bn}是首項(xiàng)為b1=2,公差為d=1的等差數(shù)列.所以S15=2×15+15×142=135,應(yīng)選B.
11.已知數(shù)列
8、{an}滿足a1=1,an+1·an=2n,則S2 015=( )
A.22 015-1 B.21 009-3
C.3×21 007-3 D.21 008-3
答案B
解析∵a1=1,an+1·an=2n,∴an≠0,a2=2,
當(dāng)n≥2時(shí),an·an-1=2n-1.
∴an+1an-1=2n2n-1=2(n≥2).
∴數(shù)列{an}中奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別成等比數(shù)列.
∴S2015=1-210081-2+2(1-21007)1-2=21009-3.故選B.
12.(2018浙江高考)已知a1,a2,a3,a4成等比數(shù)列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1
9、>1,則( )
A.a1a3,a2a4 D.a1>a3,a2>a4
答案B
解析設(shè)等比數(shù)列的公比為q,則a1+a2+a3+a4=a1(1-q4)1-q,a1+a2+a3=a1(1-q3)1-q.
∵a1+a2+a3+a4=ln(a1+a2+a3),
∴a1+a2+a3=ea1+a2+a3+a4,
即a1(1+q+q2)=ea1(1+q+q2+q3).
又a1>1,∴q<0.
假設(shè)1+q+q2>1,即q+q2>0,解得q<-1(q>0舍去).
由a1>1,可知a1(1+q+q2)>1,
∴a1(1+q+q2+q3
10、)>0,即1+q+q2+q3>0,
即(1+q)+q2(1+q)>0,
即(1+q)(1+q2)>0,這與q<-1相矛盾.
∴1+q+q2<1,即-1a3,a20)均相交,所成弦的中點(diǎn)為Mi(xi,yi),則下列說(shuō)法錯(cuò)誤的是( )
A.數(shù)列{xi}可能是等比數(shù)列
B.數(shù)列{yi}是常數(shù)列
C.數(shù)列{xi}可能是等差數(shù)列
D.數(shù)列{xi+yi}可能是等比數(shù)列
答案C
解析由直線ax+by+ci=0,當(dāng)a=0,b≠0時(shí),直線by+
11、ci=0與拋物線y2=2px(p>0)僅有一個(gè)交點(diǎn),不合題意.
當(dāng)a≠0,b=0時(shí),直線ax+ci=0,化為x=-cia,則xi=-cia,yi=0,xi+yi=-cia.
由{ci}(i∈N*)是公比不為1的等比數(shù)列,可得{xi}是等比數(shù)列,{xi+yi}是等比數(shù)列,不是等差數(shù)列.
當(dāng)a≠0,b≠0時(shí),直線ax+by+ci=0化為x=-bay-cia,代入拋物線y2=2px(p>0),可得y2+2pbay+2pcia=0.
根據(jù)根與系數(shù)的關(guān)系可得Mi:pb2a2-cia,-pba.{yi}是常數(shù)列,是等比數(shù)列,也是等差數(shù)列.
綜上可得:A,B,D都有可能,只有C不可能.
故選C.
12、
14.
如圖,在等腰直角三角形ABC中,斜邊BC=22,過點(diǎn)A作BC的垂線,垂足為A1;過點(diǎn)A1作AC的垂線,垂足為A2;過點(diǎn)A2作A1C的垂線,垂足為A3;…,依此類推,設(shè)BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,則a7= .?
答案14
解析由題意知數(shù)列{an}是以首項(xiàng)a1=2,公比q=22的等比數(shù)列,∴a7=a1·q6=2×226=14.
15.已知數(shù)列{an}的前m(m≥4)項(xiàng)是公差為2的等差數(shù)列,從第m-1項(xiàng)起,am-1,am,am+1,…成公比為2的等比數(shù)列.若a1=-2,則m= ,{an}的前6項(xiàng)和S6= .?
答案4
13、 28
解析因?yàn)閍m-1=a1+(m-2)d=2m-6,am=2m-4,而2m-42m-6=2,解得m=4,所以數(shù)列{an}的前6項(xiàng)依次為-2,0,2,4,8,16.所以S6=28.
16.(2018浙江溫嶺模擬)已知數(shù)列{an},a1=1,an+1=2an-n2+3n(n∈N*),若新數(shù)列{an+λn2+μn}是等比數(shù)列,則λ= ,μ= .?
答案-1 1
解析∵an+1=2an-n2+3n可化為an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),即an+1=2an+λn2+(μ-2λ)n-λ-μ,
∴λ=-1,μ-2λ=3,-λ-μ=0,解得λ=-1
14、,μ=1.
∴an+1=2an-n2+3n可化為an+1-(n+1)2+(n+1)=2(an-n2+n).又a1-12+1≠0,
故λ=-1,μ=1時(shí)可使得數(shù)列{an+λn2+μn}是等比數(shù)列.
17.已知正項(xiàng)數(shù)列{an}的奇數(shù)項(xiàng)a1,a3,a5,…,a2k-1,…構(gòu)成首項(xiàng)a1=1的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=a2n+1a2n,Tn=b1b2…bn,求正整數(shù)k,使得對(duì)任意n∈N*,均有Tk≥Tn.
解(1)由題意得a22=a1a3,2a5=a4+a7,設(shè)a1,a
15、3,a5,…,a2k-1,…的公差為d,則a3=1+d,a5=1+2d,a7=1+3d,a4=2a2,代入a22=1(1+d),1+d=2a2,又a2>0,解得a2=2,d=3.
故數(shù)列{an}的通項(xiàng)公式為an=3n-12,n為奇數(shù),2n2,n為偶數(shù),
(2)bn=3n+12n,顯然bn>0,∵bn+1bn=3n+42n+13n+12n=3n+46n+2<1,
∴數(shù)列{bn}單調(diào)遞減.又b1=2,b2=74,b3=108,b4=136,
∴b1>b2>b3>1>b4>b5>….
∴當(dāng)k=3時(shí),對(duì)任意n∈N*,均有T3≥Tn.
18.(2014浙江高考)已知數(shù)列{an}和{bn}滿足
16、a1a2a3…an=(2)bn(n∈N*).若{an}為等比數(shù)列,且a1=2,b3=6+b2.
(1)求an與bn;
(2)設(shè)cn=1an-1bn(n∈N*).記數(shù)列{cn}的前n項(xiàng)和為Sn.
①求Sn;
②求正整數(shù)k,使得對(duì)任意n∈N*均有Sk≥Sn.
解(1)由題意a1a2a3…an=(2)bn,b3-b2=6,
知a3=(2)b3-b2=8,
又由a1=2,得公比q=2(q=-2,舍去),
所以數(shù)列{an}的通項(xiàng)為an=2n(n∈N*).
所以,a1a2a3…an=2n(n+1)2=(2)n(n+1).
故數(shù)列{bn}的通項(xiàng)為bn=n(n+1)(n∈N*).
(2)①由(1)知cn=1an-1bn=12n-1n-1n+1(n∈N*),所以Sn=1n+1-12n(n∈N*).
②因?yàn)閏1=0,c2>0,c3>0,c4>0,
當(dāng)n≥5時(shí),cn=1n(n+1)n(n+1)2n-1,
而n(n+1)2n-(n+1)(n+2)2n+1=(n+1)(n-2)2n+1>0,
得n(n+1)2n≤5·(5+1)25<1.所以,當(dāng)n≥5時(shí),cn<0.
綜上,對(duì)任意n∈N*恒有S4≥Sn,故k=4.
6