2、2=4x的焦點(diǎn)重合,則a=________.
[解析] 雙曲線x2-y2=a2的右焦點(diǎn)的坐標(biāo)為,拋物線y2=4x的焦點(diǎn)為(1,0),從而a=1,故a=.
[答案]
4.(2019·南通模擬)在平面直角坐標(biāo)系xOy中,以直線y=±2x為漸近線,且經(jīng)過(guò)拋物線y2=4x焦點(diǎn)的雙曲線的方程是________.
[解析] 因?yàn)閽佄锞€焦點(diǎn)為(1,0),所以雙曲線的焦點(diǎn)也在x軸上,故可設(shè)所求雙曲線標(biāo)準(zhǔn)方程為-=1(a>0,b>0).又雙曲線的漸近線為y=±2x,故=2.即所求雙曲線的標(biāo)準(zhǔn)方程為x2-=1.
[答案] x2-=1
5.(2019·鎮(zhèn)江期末)若雙曲線-=1(a>0,b>0)的一個(gè)焦
3、點(diǎn)到一條漸近線的距離等于焦距的,則該雙曲線的漸近線方程是________.
[解析] 不妨設(shè)焦點(diǎn)為(c,0),則由題意得雙曲線的漸近線方程為bx±ay=0,故(2c)===b,即c=2b,從而a===b,故雙曲線的漸近線方程為y=±x=±x.
[答案] y=±x
6.(2019·江蘇省高考名校聯(lián)考(三))如圖,若C是橢圓+=1(a>b>0)上位于第一象限內(nèi)的點(diǎn),A,B分別是橢圓的左頂點(diǎn)和上頂點(diǎn),F(xiàn)是橢圓的右焦點(diǎn),且OC=OF,AB∥OC,則該橢圓的離心率為_(kāi)_______.
[解析] 設(shè)點(diǎn)C(x0,y0),則,解得,代入橢圓方程得+=1,整理得2c2=a2+b2,又a2=b2+c2
4、,故2c2=a2+a2-c2,
所以e2=,
又0<e<1,故e=.
[答案]
7.(2019·高三第三次調(diào)研測(cè)試)在平面直角坐標(biāo)系xOy中,雙曲線-=1(a>0,b>0)的右準(zhǔn)線與兩條漸近線分別交于A,B兩點(diǎn).若△AOB的面積為,則該雙曲線的離心率為_(kāi)_____.
[解析] 雙曲線的漸近線方程為y=±x,右準(zhǔn)線方程為x=,聯(lián)立可求得兩交點(diǎn)的縱坐標(biāo)為±,所以△AOB的面積S=××=,得=4,e==2.
[答案] 2
8.已知雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),P是雙曲線上任一點(diǎn),若雙曲線的離心率的取值范圍為[2,4],則·的最小
5、值的取值范圍是________.
[解析] 設(shè)P(m,n),則-=1,
即m2=a2.
又F1(-1,0),F(xiàn)2(1,0),
則=(-1-m,-n),=(1-m,-n),
·=n2+m2-1=n2+a2-1
=n2+a2-1≥a2-1,
當(dāng)且僅當(dāng)n=0時(shí)取等號(hào),
所以·的最小值為a2-1.
由2≤≤4,得≤a≤,故-≤a2-1≤-,
即·的最小值的取值范圍是.
[答案]
9.(2019·江蘇高考命題研究專(zhuān)家原創(chuàng)卷)已知拋物線的方程為y2=4x,過(guò)其焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),且|AF|=3,O為坐標(biāo)原點(diǎn),則△AOF的面積和△BOF的面積的比值為_(kāi)_______
6、.
[解析] 易知F(1,0),不妨設(shè)A在第一象限,B在第四象限.因?yàn)閨AF|=3,所以xA+1=3,解得xA=2,代入拋物線方程可得y=4×2,得yA=2,所以直線AB的方程為y=(x-1),即y=2x-2.
聯(lián)立,消去x得,y2-y-4=0,
所以2yB=-4,解得yB=-,所以△AOF的面積和△BOF的面積的比值為=2.
[答案] 2
10.(2019·南京模擬)已知橢圓x2+=1(00時(shí),則橢圓離心率的取值范圍是________.
[解析] 設(shè)F、B、C
7、的坐標(biāo)分別為(-c,0),(0,b),(1,0),則FC、BC的中垂線分別為
x=,y-=.
聯(lián)立方程組解出
m+n=+>0,即b-bc+b2-c>0,即(1+b)·(b-c)>0,所以b>c.從而b2>c2,
即有a2>2c2,
所以e2<.又e>0,
所以00,b>0)的右準(zhǔn)線l2與一條漸近線l交于點(diǎn)P,F(xiàn)是雙曲線的右焦點(diǎn).
(1)求證:PF⊥l;
(2)若PF=3,且雙曲線的離心率e=,求該雙曲線方程.
[解] (1)證明:右準(zhǔn)線為x=,由對(duì)稱(chēng)性不妨設(shè)漸近線l為y=x,
則P,又F(c
8、,0),
所以kPF==-,
又因?yàn)閗l=,所以kPF·kl=-·=-1,
所以PF⊥l.
(2)因?yàn)镻F的長(zhǎng)即F(c,0)到l:bx-ay=0的距離,
所以=3,即b=3,
又e==,所以=,所以a=4,故雙曲線方程為-=1.
12.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1,過(guò)點(diǎn)F2作直線PF2的垂線l2.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).
[解] (1)設(shè)橢圓的半焦距為c.
9、
因?yàn)闄E圓E的離心率為,兩準(zhǔn)線之間的距離為8,所以=,=8,解得a=2,c=1,于是b==,
因此橢圓E的標(biāo)準(zhǔn)方程是+=1.
(2)由(1)知,F(xiàn)1(-1,0),F(xiàn)2(1,0).
設(shè)P(x0,y0),因?yàn)镻為第一象限的點(diǎn),故x0>0,y0>0.
當(dāng)x0=1時(shí),l2與l1相交于F1,與題設(shè)不符,
當(dāng)x0≠1時(shí),直線PF1的斜率為,直線PF2的斜率為.
因?yàn)閘1⊥PF1,l2⊥PF2,所以直線l1的斜率為-,直線l2的斜率為-,
從而直線l1的方程:y=-(x+1),①
直線l2的方程:y=-(x-1).②
由①②,解得x=-x0,y=,
所以Q.
因?yàn)辄c(diǎn)Q在橢圓E上,由對(duì)
10、稱(chēng)性,得=±y0,即x-y=1或x+y=1.
又P在橢圓E上,故+=1.
由解得x0=,y0=;無(wú)解.因此點(diǎn)P的坐標(biāo)為.
13.(2019·南通市高三第一次調(diào)研測(cè)試)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓+=1(a>b>0)的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為橢圓上的一點(diǎn),過(guò)點(diǎn)O作OP的垂線交直線y=于點(diǎn)Q,求+的值.
[解] (1)由題意得,=,-c=1,
解得a=,c=1,又b2=a2-c2,所以b=1.
所以橢圓的標(biāo)準(zhǔn)方程為+y2=1.
(2)由題意知OP的斜率存在.
當(dāng)OP的斜率為0時(shí),OP=,OQ=,所以+=1.
11、當(dāng)OP的斜率不為0時(shí),設(shè)直線OP的方程為y=kx(k≠0).
由得(2k2+1)x2=2,解得x2=,
所以y2=,
所以O(shè)P2=.
因?yàn)镺P⊥OQ,所以直線OQ的方程為y=-x.
由得x=-k,所以O(shè)Q2=2k2+2.
所以+=+=1.
綜上可知,+=1.
14.(2019·江蘇名校高三入學(xué)摸底)為了保證我國(guó)東海油氣田海域的海上平臺(tái)的生產(chǎn)安全,海事部門(mén)在某平臺(tái)O的正西方向和正東方向設(shè)立了兩個(gè)觀測(cè)站A、B,它們到平臺(tái)O的距離都為5海里,并將到兩觀測(cè)站的距離之和不超過(guò)20海里的區(qū)域設(shè)為禁航區(qū)域.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求禁航區(qū)域邊界曲線的方程;
(2)某日觀察員
12、在觀測(cè)站B處發(fā)現(xiàn)在該海上平臺(tái)正南10海里的C處,有一艘輪船正以每小時(shí)8海里的速度向北偏東30°方向航行,如果航向不變,該輪船是否會(huì)進(jìn)入禁航區(qū)域?如果不進(jìn)入,說(shuō)明理由;如果進(jìn)入,求出它在禁航區(qū)域中航行的時(shí)間.
[解] (1)以O(shè)為坐標(biāo)原點(diǎn),AB所在的直線為x軸,線段AB的垂直平分線為y軸建立如圖所示的平面直角坐標(biāo)系.依題意可知,禁航區(qū)域的邊界是以A,B為焦點(diǎn)的橢圓,
設(shè)橢圓方程為+=1(a>b>0),則,
解得a=10,b=5,所以禁航區(qū)域邊界曲線的方程為+=1.
(2)由題意得C(0,-10),所以輪船航行直線的方程為y=x-10.
聯(lián)立,整理得x2-16x+60=0,
則Δ=(-16)2-4×60=16>0,方程有兩個(gè)不同的實(shí)數(shù)解x1=10,x2=6,所以輪船航行直線與橢圓有兩個(gè)不同的交點(diǎn),故輪船會(huì)駛?cè)虢絽^(qū)域.
設(shè)交點(diǎn)分別為M,N,不妨取M(10,0),N(6,-4),易得輪船在禁航區(qū)域中航行的距離為|MN|==8(海里),
所以航行時(shí)間t==1(小時(shí)),所以該輪船在禁航區(qū)域中航行的時(shí)間是1小時(shí).
- 8 -