單臂多關(guān)節(jié)運動機構(gòu)設(shè)計【說明書+CAD+SOLIDWORKS】
單臂多關(guān)節(jié)運動機構(gòu)設(shè)計【說明書+CAD+SOLIDWORKS】,說明書+CAD+SOLIDWORKS,單臂多,關(guān)節(jié),運動,機構(gòu),設(shè)計,說明書,仿單,cad,solidworks
A Low Cost Experimental Telerobotic Systems
A. Zaatri
Mechanical Department Laboratory
University Mentouri of Constantine, Algeria
http://www.infopoverty.net/new/Confs/IWC_05/docs/Zaatri.doc
Abstract
This paper presents the development of a low cost experimental telerobotic system built up with local means in an emerging country (Algeria). From a remote site, a webcam sends images of a robot manipulator through Internet to the control site where a human operator remotely monitors this robot in order to achieve pick-and-place tasks. Some control modes have been implemented and tested such as mouse-click, image-based and gesture-based modes.
Very encouraging pedagogical results have been obtained in this attractive and complex field of modern technology.
1. Introduction
In developing countries, very hard constraints and difficulties are imposed to students and researchers leading usually to inadequate pedagogic results, especially when attempting to learn and experiment complex modern systems. These constraints may stem from the lack of economical budgets, from a bureaucratic discouraging environment, from a mismach between university and industry, etc.
One interesting and challenging field to investigate and to experiment by students in emerging countries concerns the design of modern technology applications such as the development of low cost experimental telerobotic systems. Indeed, this helps to understand and master how to combine both engineering and information technologies in order to built complex systems.
In this context, some pedagogic telerobotic systems are available through Internet such as the mobile robot Xavier [1], and the web robot ABB of Australia [2]. However, as far as we know, none are available in developing countries. Therefore, to introduce this challenging technology, a didactic program has been launched based on the following steps: -build up robot arm manipulators. -build up a pantilt unit (ptu) for controlling a webcam orientation. -implement robot control software-implement the communication software via internet connecting the robot site and the operator site. -implement and test remotely some control modes.
2.The Experimental Telerobotic System
The telerobotic system is composed, at the remote site, of a robot arm manipulator and of a ptu to control the orientation of a webcam. Both the robotic arm manipulator and the ptu have been designed and built in our laboratory. The arm manipulator is a serial robot of three degrees of freedom of type RRR. It holds a gripper. The ptu enables horizontal and vertical orientations. The articulations are motorised with very economical DC motors. Figure 1 shows the ptu holding the webcam as well as the robot arm manipulator. Again, the electronic command unit for robot control are implemented in our laboratory with very cheap components.
Figure 1 . The telerobotic remote system
Since there is no hardware for signal acquisition that is available at this stage, the electronic command unit uses simply the parallel ports of the PC to select and activate the DC motors in an on-off way.
On the local site stands the human operator who remotely directs the tasks via a Graphical User Interface (GUI). This GUI is designed according to user-centred design. It provides facilities to remotely control both the robot arm manipulator and the pan-tilt unit for selecting views. Mouse click based control, image based control, and gesture based control have been implemented and tested. Figure 2 shows the operator at the local site and the video stream that enables to carry out tasks.
Figure 2 . The telerobotic local site
Two PCs are used, one at the local site and the second at the remote site. The interconnection between these sites is based on the TCP/IP sockets. The software is mainly written in Java while some low level functions are written with C.
For economical reasons, we have actually only implemented the direct geometrical model and the inverse geometrical model. Of course, the system is not accurate since these models do not take into account the gravity effect and there is no feedback. Nevertheless, these simple models enable to achieve some pick-and-place tasks.
3. Control Modes
To remotely achieve tasks, we have implemented the following three control modes.
3.1. Mouse click commands
The mouse click control mode enables the control of the robot as well as the ptu by using simple mouse clicks on some appropriate buttons of a panel. Each button represents a specific function or a specific direction of motion. The frames showed in Figure 3 shows the control panels of the arm manipulator and of the ptu.
Figure 3 . Control Panels (robot and ptu)
To achieve tasks with this mode, the operator directs the robot by a series of clicks on the appropriate buttons.
3.2. Image Based Commands
Image-based control mode enables high level control. Within this mode, the operator directs the robot towards locations in 2D or 3D space by only pointing on their images by means of a mouse clicks [3]. This mode has also been used to control Marskhod robot [4].
3.3 Gesture commands
The operator stands in front of the webcam and moves an object in a certain direction. An algorithm using the KLT tracker [5] determines the direction of the motion that serves to orient the robot in the corresponding direction.
4. Experiments
Various experiments have been carried out involving the described control modes.
4.1 Mouse-click control experiments
Within this control mode, the operator can carry out pick-and-place tasks such as pick a box from above a table and place it at another location.
In practice, the operator manages the task by clicking on selected buttons of the graphical panel in order to direct the robot towards the object of interest. Once the end-effector is positioned near that box, the operator activates the gripper for picking this object. Then, the operator moves the robot towards the position where the box has to be left. Once this position is reached, the operator deactivates the gripper in order to release the box. Figure 4 illustrates our experimental robot performing a pick-and-place task.
Figure 4 . The robot performing a task
Many experiments have been carried out with different students. It turns out that this mode is intuitive and very easy to learn.
On the other hand, difficulties arise from the fact that the operator has to direct tasks by controlling each degree of freedom independently. One main advantage is that the operator compensates the incertainties and the robot unaccuracy.
4.2 Image-based control experiments
Many experiments have been carried out using the image-based control. Practically, this control mode is used to send the robot to some location. First, an image of the remote site is grabbed. Then, the operator selects an object of interest. The streovision software extracts the coordinates of this object which are used to move the robot towards the object in the real world.
In practice, unaccuracy have negatively influenced our results because of the model simplicity, the lack of feedback, the calibration of cheap webcams. As a consequence, the implementation of image_based in 2D space have provided better results with comparison of that of 3D space.
4.3 Gesture-based control Experiments
Experiments have been carried out within this control mode. The operator generates a series of movements in different directions. The software analyses the image stream and moves the robot in the corresponding directions.
This control mode offers the advantage of being without contact of the operator with the computer. Another advantage is the possibility of using this technique for robot programming by human demonstration. Nevertheless, some difficulties which are related to image processing and environment issues limit the capability of this control mode.
5. Conclusion
A low cost pedagogic experimental telerobotic system built up in our laboratory has effectively been used to carry out simple pick-and-place experiments. We have implemented and tested three control modes namely mouse-click-based control, image-based control and gesture-based control.
Experiments has shown that the main issue remains the poor accuracy of the telerobotic system. This issue can be overcomed by adding some equipment such as accurate motors and cameras, by implementing dynamical robot models and by using feedback control.
One important added value is to combine these modes in order to build a multimodal interface.
References
[1] R. Simmons et al, “Xavier: an autonomous mobile robot on the web”, Robotic Automation Magasine, 2000, pp.733-739.
[2] B. Dalton, “Techniques for web telerobotics”, department of mechanical and material engineering . University of Western Australia, 2001.
[3] A. Zaatri and M. Oussalah, “Integration and design of multimodal interfaces for supervisory control systems”, Information fusion journal, 2003, 4(2), pp. 135-150
[4] D. Wettergreen, H. Thomas and M. Bualat, “Initial results from vision-based control of the Ames Marsokhod rover”, IEEE International Conference on intelligent robots and systems, Grenoble, sep 1997.
[5] B.D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision”, International Joint Conference on Artificial Intelligence, 1981, pages 674-679.
一種低成本實驗遙控機器人系統(tǒng)
A. Zaatri
阿爾及利亞君士坦丁門圖大學(xué)機械系實驗室
摘要
本文介紹了由新興國家(阿爾及利亞)采用當(dāng)?shù)胤椒ń⒌囊环N低成本實驗遙控機器人系統(tǒng)的發(fā)展。從長遠看,人工操作者將使用攝像頭,借助互聯(lián)網(wǎng)把圖片傳送給機械手,通過遠程控制實現(xiàn)這個機械手選擇或放置的任務(wù)。一些控制模式已經(jīng)被應(yīng)用或試驗,如鼠標(biāo)點擊模式,基于圖像的模式和基于形體的模式。
在這個充滿吸引力且十分復(fù)雜的現(xiàn)代技術(shù)領(lǐng)域已經(jīng)取得了非常令人鼓舞的成果。
1. 導(dǎo)言
在發(fā)展中國家,由于受到非常多的困難和制約因素,學(xué)生和前沿研究人員通常只能得到不完整的教學(xué)實驗成果,尤其是在嘗試學(xué)習(xí)和試驗復(fù)雜的現(xiàn)代系統(tǒng)時。這些制約因素可能源于經(jīng)濟預(yù)算的不足,或者政府官員的不支持政策,以及大學(xué)與工業(yè)領(lǐng)域的脫軌,等等。
在新興國家,學(xué)生就設(shè)計現(xiàn)代技術(shù)的申請做了一個有趣并具有挑戰(zhàn)性的實地調(diào)查和實驗,如低成本實驗遙控機器人系統(tǒng)。事實上,這有助于理解和掌握如何結(jié)合工程與信息技術(shù)來建立復(fù)雜的系統(tǒng)。
在這種情況下,通過互聯(lián)網(wǎng)可以利用到一些教學(xué)用的遙控機器人系統(tǒng),如移動機器人Xavier[1],以及澳大利亞ABB公司的網(wǎng)絡(luò)機器人[2]。但是,據(jù)我們所知,在發(fā)展中國家這些機器人沒有一個可利用。因此,為介紹這項具有挑戰(zhàn)性的技術(shù)作了教學(xué)計劃,基本步驟如下所示:
——建立機器人手臂。
——建立一個機動機構(gòu)(ptu)來控制攝像頭的方向。
——使用機器人控制軟件。
——使用通信軟件,通過互聯(lián)網(wǎng)連通機器人站點和人工操作者站點。
——應(yīng)用和試驗一些遠程控制模式。
2. 實驗遙控機器人系統(tǒng)
這個遙控機器人系統(tǒng)完成后,在遠程站點,由一個機器人手臂或一個機動機構(gòu)來控制攝像頭的方向。這個機器人手臂或這個機動機構(gòu)均已在我們實驗室設(shè)計并建造出來。這個機器人手臂是一個三自由度型的串行系統(tǒng)機器人。它擁有一個爪子。這個機動機構(gòu)能使攝像頭在水平方向和垂直方向運動。關(guān)節(jié)由一個特殊的經(jīng)濟型直流電機驅(qū)動。圖1顯示了機動機構(gòu)控制攝像頭以及機械臂操縱攝像頭的情況。另外,在我們實驗室,使用了非常便宜的組件來實現(xiàn)電子指令系統(tǒng)對機器人的控制。
圖1:遠程遙控機器人系統(tǒng)
在現(xiàn)階段由于沒有可用的硬件來采集信號,電子指令系統(tǒng)只能使用電腦的并行端口來選擇和激活直流電機的開和關(guān)狀態(tài)。
在本地站點,人工操作者通過圖形用戶界面(GUI)遠程指揮任務(wù)。這個用戶界面的設(shè)計是以用戶為中心設(shè)計的。它提供遠程控制機械臂操縱和機動機構(gòu)選擇觀察點的設(shè)施。另外,基于鼠標(biāo)點擊的控制,基于圖像的控制,基于形體的控制也已經(jīng)得到應(yīng)用和試驗。圖2顯示了人工操作者在本地站點操作控制,右圖視頻上顯示機械臂在執(zhí)行任務(wù)。
圖2:遙控機器人本地站點
使用兩臺電腦,一臺在本地站點和另一臺在遠程站點。這些站點之間的互連是基于TCP / IP插口。該軟件主要是用Java編寫的,其中一些低層次的功能是用C語言編寫的。
由于經(jīng)濟方面的原因,我們事實上只使用了直接幾何模型和逆幾何模型。當(dāng)然,這個系統(tǒng)是不準(zhǔn)確的,因為這些模型沒有考慮重力的影響,也沒有任何反饋。不過,這些簡單的模型能夠?qū)崿F(xiàn)機器人完成一些選擇或放置的任務(wù)。
3. 控制模式
為了實現(xiàn)遠程執(zhí)行任務(wù),我們使用了以下三種控制模式。
3.1鼠標(biāo)點擊命令
鼠標(biāo)點擊控制模式使機器人的控制可以通過鼠標(biāo)簡單地點擊一些合適的按鈕來控制機器人或機動機構(gòu)。每個按鈕代表了一個特定的功能或特定的運動方向。如圖3所示的表框顯示了機器人手臂和機動機構(gòu)的控制面板。
圖3:控制面板(機器人手臂和機動機構(gòu))
在這種模式下執(zhí)行任務(wù),操作者只要按特定順序點擊相應(yīng)的按鈕來控制機器人。
3.2基于圖像的命令
基于圖像的控制模式能夠?qū)崿F(xiàn)高層次的控制。在這一模式下,操作者只要在他們的圖像上通過鼠標(biāo)點擊的方式點擊機器人所在二維或三維空間的位置來控制它。這種模式曾被用來控制機器人Marskhod[4]。
3.3形體命令
操作者站在攝像頭前然后按照某個確定的方向移動一個物體。使用KLT跟蹤算法[5]來決定運動方向,實現(xiàn)在相應(yīng)方向上機器人的確定運動。
4. 實驗
我們已經(jīng)進行了各種相關(guān)實驗來描述這個控制模式。
4.1鼠標(biāo)點擊控制的實驗
在這個控制模式下,操作者可以實現(xiàn)機器人選擇和放置的任務(wù),如拿起桌子上的一個表箱或者把它搬放到到另一位置。
在實踐中,操作者通過點擊圖形面板上的選擇按鈕來控制機器人去自己所想的任何地方。只要最終地點是箱子附近的位置,操作者就能驅(qū)動夾鉗來拿起這個箱子。然后,操作者操縱機器人移動到箱子需要放置的位置。只要到達了指定地點,操作者操縱機器人松開夾鉗,放下這個箱子。圖4顯示了我們的實驗機器人演示選擇或放置的任務(wù)。
圖4:該機器人正在演示任務(wù)
很多不同的學(xué)生進行過許多實驗。實驗證明,這種模式非常直觀,非常容易學(xué)習(xí)。
另外,困難是來自實際操作方面,即操作者必須單獨控制每個自由度來使機器人執(zhí)行任務(wù)。其中一個主要優(yōu)點是:操作者彌補了系統(tǒng)的不確定性和機器人的低精度。
4.2基于圖像控制的實驗
基于圖像控制我們已經(jīng)進行了許多實驗。實際上,這種控制模式是用來傳送一些位置給機器人。首先,獲取一個遠程站點的圖片。然后,操作者選擇任意一個自己感興趣的物體。通過圖像軟件提取這個物體的坐標(biāo),用來操縱機器人使它移動到那個物體在現(xiàn)實當(dāng)中的位置上。
在實際操作當(dāng)中,因為該模式太簡單,而且缺乏反饋,并且攝像頭的校準(zhǔn)元件很廉價,它們的低精度對我們的實驗結(jié)果產(chǎn)生了負面影響。事實上,在二維空間應(yīng)用基于圖像的控制模式比在三維空間應(yīng)用此模式得出了更好的結(jié)果。
4.3基于形體控制的實驗
我們已經(jīng)進行了在這個控制模式下的很多實驗。操作者做了一系列不同方向上的運動。該軟件分析這些圖片信息流使機器人在相應(yīng)的方向上移動。
這種控制模式下的好處是操作者不需要依賴電腦。使用這個機器人技術(shù)項目的另一個優(yōu)點是人類可以通過肢體示范來控制機器人。不過,相關(guān)的圖像處理問題以及環(huán)境問題等一些方面的困難限制了這種控制模式的可行性。
5. 結(jié)論
我們實驗室建立的這個低成本教學(xué)用實驗遙控機器人系統(tǒng)能在實驗中有效地完成簡單的選擇或放置動作。我們已經(jīng)應(yīng)用并測試了這三種控制模式,即基于鼠標(biāo)點擊的控制模式,基于圖像的控制模式和基于形體的控制模式。
實驗表明,仍然存在的主要問題是遙控機器人系統(tǒng)的精度差。這個問題可以通過增加高精度電機和精密攝像機,使用動態(tài)機器人模型以及運用反饋控制來克服。
一個重要的附加價值是將這些控制模式結(jié)合起來建立一個多式聯(lián)運接口。
參考文獻
[1] R. Simmons et al,“Xavier:網(wǎng)絡(luò)自動機器人”,機器人自動化雜志,2000,P733-P739.
[2] A. Zaatri and M. Oussalah,“網(wǎng)絡(luò)遙控機器人技術(shù)”,機械與材料工程系,西澳大利亞大學(xué),2001.
[3] A. Zaatri and M. Oussalah,“監(jiān)控系統(tǒng)多式聯(lián)運接口的整合與設(shè)計”,信息融合雜志,2003, 4(2), P135-P150.
[4] D. Wettergreen, H. Thomas and M. Bualat,“Ames Marsokhod火星車基于視覺控制的初步結(jié)果”,智能機器人系統(tǒng)的IEEE國際會議,Grenoble,1997.10.
[5] B.D. Lucas and T. Kanade,“迭代圖像配準(zhǔn)技術(shù)在立體視覺中的應(yīng)用”,人工智能國際聯(lián)合會議,1981,P674-P679.
大學(xué)畢業(yè)設(shè)計(論文)任務(wù)書
院(系) 機電工程學(xué)院 專業(yè) 機械設(shè)計制造及其自動化 班 姓名 學(xué)號
1.畢業(yè)設(shè)計(論文)題目: 單臂多關(guān)節(jié)運動機構(gòu)設(shè)計
2.題目背景和意義:
智能移動機器人是一類能通過傳感器感知自身位置狀態(tài),可判斷完成對目標(biāo)相應(yīng)移動任務(wù)的控制系統(tǒng),機器人系統(tǒng)向擬人方向發(fā)展是目前智能機器人系統(tǒng)研究的熱點問題。本課題單臂多關(guān)節(jié)運動機構(gòu)設(shè)計,實現(xiàn)擬人操作臂各關(guān)節(jié)間在移動過程中完成空間抓取任務(wù)。
該設(shè)計要求學(xué)生具備機械設(shè)計知識和技能;具備數(shù)據(jù)仿真、分析計算、以及有限元分析的知識和技能。在整個設(shè)計過程中培養(yǎng)學(xué)生發(fā)揮主動性,積極性的能力,培養(yǎng)他們的綜合分析問題和解決問題的能力,促進學(xué)生由知識型向綜合型轉(zhuǎn)化。
3.設(shè)計(論文)的主要內(nèi)容(理工科含技術(shù)指標(biāo)):
完成機器人機械部分的部件及零件的設(shè)計,保證調(diào)整方便、精度準(zhǔn)確等要求。
本機的設(shè)計性能與技術(shù)參數(shù):
結(jié)構(gòu)型式:關(guān)節(jié)式
自由度:6。
運動范圍:底座旋轉(zhuǎn)角度±360°,肩關(guān)節(jié)旋轉(zhuǎn)角度為±120°,單筆肘關(guān)節(jié)旋轉(zhuǎn)角度為±105°,單筆腕關(guān)節(jié)旋轉(zhuǎn)角度為±45°;
夾持器開關(guān)為開/合狀態(tài)
夾持總重量為5kg;
4.設(shè)計的基本要求及進度安排(含起始時間、設(shè)計地點):
1)全面了解機器人的工作原理,在此基礎(chǔ)上完成機器設(shè)計;
2)根據(jù)設(shè)計技術(shù)參數(shù)擬定部件結(jié)構(gòu)方案;
3)確定結(jié)構(gòu)尺寸,設(shè)計機器人的部件圖;
4)進行零件圖設(shè)計;
5)對所設(shè)計重要零件進行校核。撰寫設(shè)計說明書。
題目的進度與安排如下:
第1~3周 實習(xí)、收集資料、寫出實習(xí)及開題報告。
第4~5周 分析機器結(jié)構(gòu)特性,了解機器人工作原理確定初步設(shè)計方案。
第6~7周 按照技術(shù)參數(shù)要求進行部件設(shè)計,完成相關(guān)計算。
第8~11周 完成部件圖紙設(shè)計;
第12~15周 完成零件圖紙設(shè)計,完成相關(guān)計算。
第16~17周 編寫設(shè)計說明書。
第18 周 準(zhǔn)備答辯。
5.畢業(yè)設(shè)計(論文)的工作量要求
① 實驗(時數(shù))*或?qū)嵙?xí)(天數(shù)): 實習(xí)2周。
② 圖紙(幅面和張數(shù))*: 圖紙:折合A0圖紙3張。
③ 其他要求: 論文不少于1.5萬字 。英文翻譯的漢字字?jǐn)?shù)3000字以上。 參考文獻: 不少于20篇,其中不少于3篇外文資料。
主要參考資料:
1. 《機械設(shè)計手冊》,出版社,機械工業(yè)出版社。出版日期,2004.8。
2. 《機械原理》教材。
3. 各種工業(yè)機器人圖冊等。
4. 相關(guān)文獻。
指導(dǎo)教師簽名: 年 月 日
學(xué)生簽名: 年 月 日
系(教研室)主任審批: 年 月 日
說明:1本表一式二份,一份由學(xué)生裝訂入附件冊,一份教師自留。
2 帶*項可根據(jù)學(xué)科特點選填。
XX學(xué)院
畢業(yè)設(shè)計說明書(論文)
作 者:
學(xué) 號:
學(xué)院(系):
專 業(yè):
題 目:
單臂多關(guān)節(jié)運動機構(gòu)
2015 年 6月
37
畢業(yè)設(shè)計說明書(論文)中文摘要
單臂多關(guān)節(jié)運動是一個典型的機電一體化產(chǎn)品,單臂機制適合于多伸縮縫是單臂運動多關(guān)節(jié)研究的熱點。處理研究機構(gòu)多關(guān)節(jié)運動需要機械,電子,信息理論,人工智能,知識和生物和計算機等諸多學(xué)科的組合,但其發(fā)展也促進了這些學(xué)科的發(fā)展。
在這項工作中,對于在多臂結(jié)構(gòu)銜接的機身設(shè)計采用一般安裝圖紙,并完成零件和設(shè)計圖紙。要求分析模型的機械手臂的多關(guān)節(jié)來估計關(guān)節(jié)選擇所需的扭矩和功率,完整的發(fā)動機和變速箱。其次,發(fā)動機和變速箱連接并固定開始設(shè)計通用結(jié)構(gòu),而重要的連接測試的機構(gòu)強度。
關(guān)鍵詞: 結(jié)構(gòu)設(shè)計,單臂多關(guān)節(jié)運動機構(gòu),關(guān)節(jié)型單臂多關(guān)節(jié)運動,結(jié)構(gòu)分析
畢業(yè)設(shè)計說明書(論文)外文摘要
Arm multi-joint movement is a typical mechatronic product, single-arm multi-joint movement mechanism is a single-arm multi-joint movement research hotspot. Handling arm multi-joint movement research requires a combination of mechanics, electronics, information theory, artificial intelligence, and many other disciplines biology and computer knowledge, but its development also contributed to the development of these disciplines.
In this paper, for use in a multi-arm articulation body structure design, and complete and drawing parts drawing of general assembly drawings. Requirements for multi-articulation arm mechanics analysis models to estimate the joint selection of the desired torque and power, complete motor and reducer. Second, from the motor and gearbox connected and fixed starting joint structure design, and the institutional strength of the important connection check.
??????????
Keywords: structural design, single-arm multi-joint movement mechanism, articulated arm multi-joint movement, structural analysis
目 錄
第1章 緒論 1
1.1 引言 1
1.2 搬運單臂多關(guān)節(jié)運動研究概況 2
1.2.1 國外研究現(xiàn)狀 2
1.2.2 國內(nèi)研究現(xiàn)狀 3
1.3 搬運單臂多關(guān)節(jié)運動的總體結(jié)構(gòu) 4
1.4 主要內(nèi)容 5
第2章 總體方案設(shè)計 6
2.1 技術(shù)參考數(shù)據(jù) 6
2.2 單臂多關(guān)節(jié)運動工程概述 6
2.3 工業(yè)單臂多關(guān)節(jié)運動總體設(shè)計方案論述 7
2.4 單臂多關(guān)節(jié)運動機械傳動原理 8
2.5 單臂多關(guān)節(jié)運動總體方案設(shè)計 9
2.6 本章小結(jié) 10
第3章 單臂多關(guān)節(jié)運動大臂結(jié)構(gòu) 11
3.1 大臂部結(jié)構(gòu)設(shè)計的基本要求 11
3.2 大臂部結(jié)構(gòu)設(shè)計 12
3.3 大臂電機及減速器選型 12
3.4 減速器參考數(shù)據(jù)的計算 13
第4章 單臂多關(guān)節(jié)運動小臂結(jié)構(gòu)設(shè)計 17
4.1 腕部設(shè)計 17
4.2 手腕偏轉(zhuǎn)驅(qū)動計算 17
4.3 軸分析及計算 20
4.4 軸承的壽命校核 21
4.5 軸的強度校核 21
第5章 單臂多關(guān)節(jié)運動機身設(shè)計 23
5.1步進電機選擇 23
5.2鍵的選擇和校核 28
5.3 機身結(jié)構(gòu)的設(shè)計 28
總結(jié)與展望 29
致 謝 30
參 考 文 獻 32
第1章 緒論
1.1 引言
單臂多關(guān)節(jié)運動是一種典型的機電一體化產(chǎn)品,處理多關(guān)節(jié)的動作是多領(lǐng)域聯(lián)合研究的熱點手臂運動。處理研究機構(gòu)多關(guān)節(jié)運動需要機械,電子,信息理論,人工智能,知識和生物和計算機等諸多學(xué)科的組合,但其發(fā)展也促進了這些學(xué)科的發(fā)展。手臂多關(guān)節(jié)運動領(lǐng)導(dǎo)的多關(guān)節(jié)手臂運動。
1959年,世界第一工業(yè)臂多關(guān)節(jié)運動的誕生,開創(chuàng)了新的發(fā)展時代手臂的多關(guān)節(jié)運動。隨著科學(xué)技術(shù)的多關(guān)節(jié)快速發(fā)展的研究和應(yīng)用操作臂的發(fā)展。加藤一郎早稻田大學(xué)多伸縮縫的世界知名教授專家的胳膊說:“一個偉大的功能,多關(guān)節(jié)手臂運動應(yīng)具備的功能?!笔虑槭沁@樣的,其中高腳自動化程度,動力系統(tǒng)更復(fù)雜。偉大的發(fā)明家愛迪生曾經(jīng)說過這樣一句話:“上帝創(chuàng)造了人,兩條腿是最美妙的杰作?!痹撓到y(tǒng)具有環(huán)保要求豐富的動態(tài)是非常低的,無論在地面,而且在非結(jié)構(gòu)地形復(fù)雜,環(huán)境適應(yīng)性好。為擴大功能與應(yīng)用的單臂多關(guān)節(jié)運動開辟無限廣闊的發(fā)展前景。
研究單臂多關(guān)節(jié)運動的原因和目的,主要表現(xiàn)在以下幾個方面:要發(fā)展的機構(gòu),使它們能在許多圈子結(jié)構(gòu)性和非結(jié)構(gòu)性的工作,而不是個人或延伸和擴展人類活動的領(lǐng)域;更希望人類有一個內(nèi)在的理解和認識,并使用這些功能對個人服務(wù),如:假肢。系統(tǒng)動力學(xué)與豐富,這方面的研究,擴大機械的研究和手臂運動多的風(fēng)險;多關(guān)節(jié)臂的運動可以用來作為多關(guān)節(jié)臂移動智能播放在人工智能領(lǐng)域的一個重要的角色。
管理多關(guān)節(jié)臂運動的定義,世界上不僅分類是不一樣的。最近通過的聯(lián)合國國際對美國的手臂運動協(xié)會多企業(yè)標(biāo)準(zhǔn)化定義在他的手臂多關(guān)節(jié)運動帶來:操作臂多聯(lián)合演習(xí)是一個多功能可編程的操作系統(tǒng),您可以更改程序動作完成各種工作,特別是對材料處理,傳輸?shù)墓ぜ?。參考國外定義,與中國的搬運臂多關(guān)節(jié)運動的語言組合被定義如下:
操作臂多關(guān)節(jié)運動是獨立的行動,更大的自由,該程序可以靈活改變,它可以放在任何地方,機器自動化的自動化程度高。汽車油漆或其他涂料行業(yè)關(guān)節(jié)臂多關(guān)節(jié)運動E'可用。
搬運臂運動多關(guān)節(jié)高剛性作為主臂,相對于其他,可以具有移動速度快,能攜帶較重的東西,并且定位精度非常高,它可以根據(jù)外部信號,自動的各種操作。
處理多關(guān)節(jié)臂的運動是計算機中的可編程的自動化機器的控制下。使用多聯(lián)合演習(xí)的操作臂是提高產(chǎn)品質(zhì)量和生產(chǎn)效率的工作,生產(chǎn)過程自動化,提高了勞動條件,減輕勞動強度的有效手段。誕生和多關(guān)節(jié)手臂運動的發(fā)展,雖然只有30多年的歷史,但已被應(yīng)用到國民經(jīng)濟的許多部門,民用技術(shù),應(yīng)用,具有廣闊的發(fā)展前景,顯示出強大的生命力[1-2]。
1.2 搬運單臂多關(guān)節(jié)運動研究概況
1.2.1 國外研究現(xiàn)狀
人類和動物的運動原理的第一個系統(tǒng)研究是邁布里奇發(fā)明了照相機跟單,即設(shè)定的觸發(fā)相機的電源,并在1877年他成功地參加了四足和連續(xù)運行的許多照片。后來,這種方法使用的相機是用來研究人體運動Demeny。從1930年到1950年,蘇聯(lián)也伯恩斯坦從深入人類和動物研究的生物動力機制的角度看,并提出??的議案非常形象化的描述。
真正研究機構(gòu)運動多關(guān)節(jié)全面,系統(tǒng)于1960年推出至今,聯(lián)合多月的手臂比較完整的理論體系只有形成,并在一些國家,如日本,美國和“蘇聯(lián)已成功開發(fā)出可以是靜態(tài)或動態(tài)的,多臂樞軸原型。在這一節(jié)中,我們介紹了1960年至1985年期間,臂多關(guān)節(jié)實地達到的運動的最重要的進展的團隊。
在20世紀(jì)60年代和70年代,武裝多關(guān)節(jié)運動控制理論產(chǎn)生三種類型的控制方法是非常重要的,這限制了國家控制,控制參考模型和控制算法。這三種控制的方法對所有類型的單臂多關(guān)節(jié)運動都是適用的。國家控制是通過在1961年提出的模型的參考檢查于1975年由美國法恩斯沃思南斯拉夫托莫維奇限制,該算法是由著名的胳膊南斯拉夫研究所米哈伊爾?羅多關(guān)節(jié)運動學(xué)專家鮑賓控制Vukobratovic博士1969 - 1972年的教堂中扣除。有這三種類型的控制方法之間的內(nèi)在關(guān)系。有限狀態(tài)控制實質(zhì)上是一個控制參考模型,并且該控制算法是這種情況[1]的中心。
在搜索步態(tài),蘇聯(lián)Bessonov和Umnov定義“最佳步態(tài)”,Kugushev和Jaro-
shevskij定義自由的步伐。這兩種步態(tài)不僅能適應(yīng),而且要適應(yīng)胳膊多條腿多企業(yè)的動向。在這些中,對于自由路徑的步驟的條件的規(guī)則。如果地形是非常粗糙的,所以運動臂多關(guān)節(jié),下一步應(yīng)放在哪里腳不能基于對步驟序列來加以考慮,但應(yīng)通過步驟以便攀登者去步驟通過一些優(yōu)化標(biāo)準(zhǔn)來確定哪個是所謂的自由速度。
穩(wěn)定性研究手臂動作的多關(guān)節(jié),美國Hemami,該提議的穩(wěn)定性和系統(tǒng)的控制的簡化模型作為振蕩器,反轉(zhuǎn)(倒立擺),它可以被解釋為在換能器存在的問題的向前運動。此外,減少了控制的考慮,Hemami,誰也研究手臂運動的多關(guān)節(jié)“減少型”問題的復(fù)雜性進行了研究。
此前我們指出了系統(tǒng)的Vukobratovic還人形能量分析,但它的力量是有限的關(guān)節(jié)和隨時間的整個系統(tǒng)的變化,并沒有太多涉及這個問題的最佳功耗的出口。但是在他的研究中,Vukobratovic得出一個有用的結(jié)論,即平滑的姿態(tài),類人型系統(tǒng)所消耗的功率就越少。
1.2.2 國內(nèi)研究現(xiàn)狀
國內(nèi)單臂多關(guān)節(jié)運動起步較晚,我國自1980年以來,一個單臂多聯(lián)合攻關(guān)和在體育領(lǐng)域的應(yīng)用。 1986年,該國在1987年推出了“七五”攻關(guān)項目多動關(guān)節(jié)臂,高新技術(shù)中國的“863”水平運動臂包括更多的聯(lián)合研究和開發(fā)。目前,中國移動手臂多企業(yè)的研究和應(yīng)用開發(fā)單位主要是高校和科研院所的相關(guān)。最初的研究的主要目的進行了單臂多關(guān)節(jié)運動技術(shù)監(jiān)測先進技術(shù)多國際風(fēng)險運動臂,然后取得了一些成績。
哈爾濱工業(yè)大學(xué)1986年他開始研究最關(guān)節(jié)臂,腳靜手臂運動HIT-I和110厘米高,體重70kg多企業(yè),第一個成功開發(fā)具有10個自由度,以實現(xiàn)在地面上的進展,該行的左側(cè)和右側(cè),以及運動,上下樓梯,跨越45厘米,10秒/步,然后速度成功研制出HIT和HIT-II-III,體重42公斤,身高103厘米,它有12個自由度,以實現(xiàn)一個步驟24厘米,每秒2.3分步調(diào)。目前在下臂的HI第四多關(guān)節(jié)運動的發(fā)展,主體可以具有52個自由度,這是優(yōu)異的運動和平衡三個單臂運動多關(guān)節(jié)[3-7]的速度方面。
國防科技大學(xué)于1988年的春天已經(jīng)成功開發(fā)了六自由度平面雙足運動臂多關(guān)節(jié)KDW-1,可以向前,向后和上下樓梯,最大速度為40厘米,每秒4個步驟,在1989年的步伐,先后開發(fā)了種類空間KDW-II,擁有10個自由度,最高的69厘米,體重13公斤包括更多的來回,上下樓梯和周圍的幾乎穩(wěn)定靜態(tài)動態(tài)。 1990增加了平臺??KDW-II的兩個垂直縫,在KDW-Ⅲ開發(fā)的,具有12個自由度,與函數(shù)曲線,以獲得一個實驗室環(huán)境完整。 1995動態(tài)步伐,0.8分第二,在步驟20厘米?22厘米,13度的最大傾斜角。發(fā)展在2000年底的KDW-III成功的中國的“急先鋒”第一類人手臂的多關(guān)節(jié)運動的基礎(chǔ)上,在不確定的環(huán)境中動態(tài)的,小的偏差,每秒兩步周期,高1.4米,體重20公斤,有一個頭,眼,頸,身體,手臂,腳,并有一定程度的語言功能[8-13]的。
此外,清華大學(xué)正在開發(fā)一個人形的手臂多關(guān)節(jié)運動THBIP-I,高1.7米,體重130公斤,32自由度,與清華大學(xué)985項目的支持下,該項目正在推進。航空航天南京大學(xué)已開發(fā)出8自由度單臂多關(guān)節(jié)運動的空間,靜態(tài)函數(shù)[13,14]。
本文擬從“首屆全國研究生機械創(chuàng)新設(shè)計大賽”臂多關(guān)節(jié)的動作。目前,單臂,多關(guān)節(jié)運動大多是在車輪的形式來實現(xiàn)功能的階段。其實模仿人類行走的腿臂與多關(guān)節(jié)的運動并不多,但有六足,四足臂多關(guān)節(jié)運動已經(jīng)出現(xiàn),但多關(guān)節(jié)運動的手臂尚不多見。我們的問題,探索設(shè)計巧妙只是機械設(shè)備和簡單的控制系統(tǒng)可以實現(xiàn)模擬人的手臂的多關(guān)節(jié)的動作。其子功能有:交替邁腿、搖頭、擺大臂、擺小臂。
1.3 搬運單臂多關(guān)節(jié)運動的總體結(jié)構(gòu)
搬運單臂多關(guān)節(jié)運動的組成及各部分關(guān)系概述:
它主要由機械系統(tǒng)(執(zhí)行系統(tǒng),牽引系統(tǒng)),檢測系統(tǒng)和智能控制系統(tǒng)。
(1)執(zhí)行系統(tǒng):執(zhí)行系統(tǒng)管理臂的通用件,機械零件最全面的清晰度,以獲得必要的各種運動,包括手,手腕,機身。
1. 末端執(zhí)行器:以便執(zhí)行的工作,并構(gòu)造成直接涂漆的片。
2.手腕,手和臂的連接元件,其作用是調(diào)節(jié)或改變工作的端部的方向。
3.臂部 所述臂部分的連接基和手,支持手腕構(gòu)件,被攜帶的管理塊的負載,改變手的空間位置,以滿足臂操作空間多關(guān)節(jié)運動,每種類型的載荷傳遞到基座。
(d) 機身:的多關(guān)節(jié)運動臂基座部分,起到支撐作用,這是支持臂的部件,其作用是使所述臂的轉(zhuǎn)動,起重或傾斜運動。
(2)驅(qū)動系統(tǒng):提供電源到正在運行的系統(tǒng)的各種部件,以及其供應(yīng)單元裝置。常用的機械傳動,機械傳動和電氣,氣動和電動。
(3)控制系統(tǒng):該驅(qū)動器的控制系統(tǒng),使該系統(tǒng)的實施按照工作的要求,發(fā)出報警信號時的錯誤或故障。
(4)檢測系統(tǒng):通過各種傳感裝置,致動裝置的運動檢測中的作用,如果需要的話反饋到控制系統(tǒng)與該組相比較,以確保遵守該運動的要求。
實踐證明,進組多關(guān)節(jié)運動可以代替繁重的體力勞動,顯著減輕工人的勞動強度,改善勞動條件,提高勞動生產(chǎn)率和自動化。頻繁的處理和工業(yè)生產(chǎn)中的長期經(jīng)常笨重件,單調(diào)的操作,使用單臂多聯(lián)合演習(xí)是有效的。此外,它可在高溫,低溫,深水,宇宙,環(huán)境條件和其他放射性毒物污染進行操作,同時也顯示出優(yōu)越性,它具有廣闊的發(fā)展前景[4-8]。
1.4 主要內(nèi)容
第1章 緒論 主要介紹單臂多關(guān)節(jié)運動的相關(guān)知識和本課題研究的任務(wù)和要求.
第2章 總體方案設(shè)計,介紹該單臂多關(guān)節(jié)運動各部分的相關(guān)知識和總體設(shè)計.
第3章 單臂多關(guān)節(jié)運動各部分設(shè)計的介紹
第4章 單臂多關(guān)節(jié)運動結(jié)構(gòu)設(shè)計
第2章 總體方案設(shè)計
2.1 技術(shù)參考數(shù)據(jù)
課題名稱:單臂多關(guān)節(jié)運動機構(gòu)
技術(shù)參考數(shù)據(jù):底座旋轉(zhuǎn)角度正負360度,肩關(guān)節(jié)旋轉(zhuǎn)角度正負120度,肘關(guān)節(jié)旋轉(zhuǎn)角度正負105度,腕關(guān)節(jié)旋轉(zhuǎn)角度正負45度,夾持器開關(guān)未開/合狀態(tài),加持總重5kg
2.2 單臂多關(guān)節(jié)運動工程概述
單臂多關(guān)節(jié)運動是一個技術(shù)集成的跨學(xué)科,涉及計算機技術(shù)和自動化技術(shù)的機器,機制,機械,氣動,液壓技術(shù),檢測技術(shù)等領(lǐng)域。在科人得到有效解決組合問題綜合工程被稱為“系統(tǒng)工程”。手臂多關(guān)節(jié)運動設(shè)計,例如,系統(tǒng)工程,應(yīng)作為一個綜合的方法來系統(tǒng)設(shè)計對外關(guān)系的系統(tǒng),并從整個有機聯(lián)系的手臂運動環(huán)境的研究,開發(fā)和應(yīng)用根據(jù)系統(tǒng)的內(nèi)部部分多接頭。
從復(fù)雜機械系統(tǒng),包括一定的規(guī)則的功能系統(tǒng)結(jié)合多個子系統(tǒng),它是一個不可分割的整體。如果你失去了開放的系統(tǒng),可根據(jù)特定的一組。因此,在一個復(fù)雜的機械設(shè)計,概念啟動機器,系統(tǒng)必須具有以下特征:
(1)機械系統(tǒng)完整的完整性機械系統(tǒng)由幾個子系統(tǒng)具有不同的整體性能應(yīng)具有的特定功能。
(2)作用的子系統(tǒng)之間的有機聯(lián)系,包括有機,相互關(guān)聯(lián)的。
(3)每個目標(biāo)系統(tǒng)必須具有明確的目標(biāo)和系統(tǒng)的功能,結(jié)構(gòu),功能,目標(biāo)和手段,決策系統(tǒng)的各個子系統(tǒng)結(jié)合起來。
(4)系統(tǒng)對環(huán)境的適應(yīng)是適應(yīng)環(huán)境在某些情況下,我們必須能夠適應(yīng)變化的外部環(huán)境中。
所以,在設(shè)計機器人時,不僅要注意關(guān)節(jié)運動系統(tǒng)的部件的整個多部件設(shè)計臂應(yīng)根據(jù)視工程系統(tǒng)的角度來看,這取決于一個單一的多關(guān)節(jié)臂的動作的功能要求,子系統(tǒng),多臂關(guān)節(jié),合理,產(chǎn)品的性能,需要在多關(guān)節(jié)臂的動作的作業(yè)的所有組件。一般來說,最復(fù)雜的行業(yè)手臂關(guān)節(jié)如下:在操作機器,是最大的,單臂多關(guān)節(jié)的運動來完成的任務(wù),其中包括基地,手臂,手腕,副作用機構(gòu)。傳輸系統(tǒng),其中包括幾個傳輸零點電源,控制,驅(qū)動系統(tǒng)和伺服驅(qū)動系統(tǒng)。所述控制系統(tǒng)包括電子控制裝置的操作,記憶功能(計算機或其它版本控制裝置可編程),操作員接口裝置(鍵盤,學(xué)習(xí)盒等),數(shù)據(jù)處理裝置和各種傳感器,放大離線傳輸,傳感器編程接口設(shè)備通??信的I / O 14]內(nèi)部和外部傳感器和其他設(shè)備(一般或特別。
特征行業(yè)臂多關(guān)節(jié)運動是普遍的調(diào)整,靈活的臂工業(yè)多關(guān)節(jié)運動可有效地用于柔性生產(chǎn)系統(tǒng)關(guān)鍵部件的發(fā)送處理單元組件或材料或其它柔性制造系統(tǒng)(例如,機床,鍛壓,焊接,裝配等生產(chǎn)設(shè)備),輔助設(shè)備,控制系統(tǒng),多關(guān)節(jié)臂運動,各種不同形式的運動系統(tǒng)的組建多聯(lián)技術(shù)工藝機械行業(yè)其他生產(chǎn)部門。生產(chǎn),如建筑,開采,生產(chǎn)和輸送臂移動多關(guān)節(jié)是參考系統(tǒng)。。
2.3 工業(yè)單臂多關(guān)節(jié)運動總體設(shè)計方案論述
(一)確定負載
目前,國內(nèi)工業(yè)用運動的多關(guān)節(jié)臂,負載能力,最小額定負載5N或更小范圍很大,最多的為9000N。這篇文章5公斤載荷。
負載的大小主要取決于由于運動的沿的作用力和夫婦的機械接口上的多關(guān)節(jié)臂的運動的方向。其中下臂應(yīng)該包括端部執(zhí)行器的更關(guān)節(jié)運動(重量),和工件的重量或處理對象接縫預(yù)定速度和加速度的條件下,產(chǎn)生的慣性力等。該項目的數(shù)據(jù)參考設(shè)計初步估算表明,這一項目可能屬于一個小負荷。
(B)驅(qū)動系統(tǒng)
由于伺服電機具有良好的控制性能,檢查的靈活性,允許速度,位置,環(huán)境,體積小,效率高,適用于更為苛刻的運動控制沒有影響的精確控制小臂運動多企業(yè)等特點,因此,該項目采用的是伺服電機。
(C)傳動系統(tǒng)
動臂多關(guān)節(jié)運動可以緊湊,重量輕,慣性小,傳動鏈條應(yīng)考慮采取措施縮小差距,提高手臂多的移動和位置創(chuàng)業(yè)精密運動控制。臂傳遞機構(gòu)機械運動多關(guān)節(jié)通常使用齒輪,蝸桿,滾珠絲杠,皮帶,鏈條傳動,行星齒輪,傳動齒輪和諧波鋼等,由于傳動齒輪具有效率高,準(zhǔn)確,結(jié)構(gòu)緊湊,工作可靠,壽命長等優(yōu)點,與大學(xué)學(xué)習(xí)和掌握更扎實的傳輸,所以這個設(shè)計選擇的旅行。
(四)工作范圍
操作過程中的工業(yè)手臂動作的工作范圍是多關(guān)節(jié)的多關(guān)節(jié)臂的運動取決于所述扇區(qū)的操作領(lǐng)域和確定的軌跡,用表示的工作空間。形狀和有關(guān)該結(jié)構(gòu)的工作空間的大小坐標(biāo)運動的多關(guān)節(jié)機械手,其大小和在數(shù)量和程度每個臂的自由操縱器公共軸線的長度的變化程度和所選擇的關(guān)節(jié)軸的每個角的
(五)運動速度
每個鉸接機械臂更堅定的臂的最大行程,按照循環(huán)時間來確定每個操作的時間的運動后,可以進一步確定每個動作的速度,單位為米/秒(°)/ s的,時間每個運動分配考慮在順序地或同時地等進行許多因素,如每個操作序列之間的周期的總時間長度。表做他們的操作時間,操作時間分配之外的運動進行比較,以考慮分配請求有關(guān)的過程,它也必須考慮慣性的行程的大小和驅(qū)動和控制,定位和精度要求。
2.4 單臂多關(guān)節(jié)運動機械傳動原理
該方案結(jié)構(gòu)設(shè)計與分析
該搬運單臂多關(guān)節(jié)運動的本體結(jié)構(gòu)組成如圖
搬運單臂多關(guān)節(jié)運動本體組成
各零部件的功能介紹:
底座部件:
底座部件包括底座,齒輪件,軸承,步進電機。基本作用是支撐元件,支撐元件和旋轉(zhuǎn)臂,承擔(dān)著行李臂運動的多關(guān)節(jié)和工作量的重量,然后將堿必須具有足夠的強度,剛度和負荷能力。此外庫也需要大量的安裝基礎(chǔ)足以保證運動臂運輸多關(guān)節(jié)在工作場所的穩(wěn)定運行。
搬運單臂多關(guān)節(jié)運動的手臂通過通常的相位分量(例如氣缸,氣缸,齒輪齒條機構(gòu),連桿機構(gòu),螺旋機構(gòu)和凸輪機構(gòu)等)以及一個驅(qū)動源移動懸臂多關(guān)節(jié)臂(例如,液壓或氣動馬達的臂致動合作的移動等),以實現(xiàn)各種的臂的運動的
手臂分為大臂和小臂。其中大臂部件是由大臂,齒輪傳動部件和驅(qū)動電機所構(gòu)成。小臂部件由小臂、傳動軸及同步傳動帶等組成。手腕部分由手腕殼體、傳動齒輪和傳動軸、機械接口等所組成。。
2.5 單臂多關(guān)節(jié)運動總體方案設(shè)計
工業(yè)單臂多關(guān)節(jié)運動的結(jié)構(gòu)形式主要是含以下4種:直角坐標(biāo)結(jié)構(gòu),圓柱坐標(biāo),球面坐標(biāo)結(jié)構(gòu),鉸接結(jié)構(gòu)為四個。每個結(jié)構(gòu)和相應(yīng)的特征描述如下[3]。
(1) 直角坐標(biāo)單臂多關(guān)節(jié)運動結(jié)構(gòu)
直角坐標(biāo)單臂多關(guān)節(jié)運動的空間坐標(biāo)臂多關(guān)節(jié)的運動是三個相互垂直的直線運動來實現(xiàn)的,如圖2-1(a)在閉環(huán)位置控制的線性運動是容易實現(xiàn),所以直角坐標(biāo)臂多關(guān)節(jié)運動,可能得到高位置精度(微米級)。然而,對于尺寸多關(guān)節(jié)臂運動坐標(biāo)而言的結(jié)構(gòu)的移動相對該單個臂的運動的多關(guān)節(jié)笛卡爾空間,是比較小的。因此,為了獲得運動的一定的自由,結(jié)構(gòu)正交的尺寸協(xié)調(diào)多個關(guān)節(jié)臂比其他類型的多關(guān)節(jié)臂結(jié)構(gòu)尺寸大。
直角坐標(biāo)臂多關(guān)節(jié)的矩形空間的工件移動。笛卡爾坐標(biāo)手臂運動最常見的是主要用于組裝和處理操作,笛卡爾坐標(biāo)多關(guān)節(jié)臂運動有三種結(jié)構(gòu)懸臂龍門吊型。
(2) 圓柱坐標(biāo)單臂多關(guān)節(jié)運動結(jié)構(gòu)
柱面坐標(biāo)臂的空間運動是兩個直線運動和旋轉(zhuǎn)運動的多關(guān)節(jié)運動來實現(xiàn)的,如圖2-1(b)中。多關(guān)節(jié)單個臂的這種運動是相對簡單的,精度可以在處理操作中通常使用的。他的工作空間是一個圓柱形空間。
(3) 球坐標(biāo)單臂多關(guān)節(jié)運動結(jié)構(gòu)
可動臂的空間多關(guān)節(jié)的球形協(xié)調(diào)運動由兩個旋轉(zhuǎn)運動和線性運動來獲得,如2-1(c)中。這個簡單的單臂運動的多關(guān)節(jié)結(jié)構(gòu),成本低,但精度不高。主要用于處理操作。他們的工作空間是一個球形空間。
(4) 關(guān)節(jié)型單臂多關(guān)節(jié)運動結(jié)構(gòu)
運動空間關(guān)節(jié)臂運動多關(guān)節(jié)由三個旋轉(zhuǎn)運動,以獲得,例如2-1(d)所示。關(guān)節(jié)臂動作多關(guān)節(jié)運動靈活,結(jié)構(gòu)緊湊,占地面積小。手臂多關(guān)節(jié)運動相對車身尺寸,其相對較大的工作空間。這樣的單臂運動多關(guān)節(jié)被廣泛應(yīng)用于工業(yè),如焊接,涂裝,搬運,組裝等作業(yè),被廣泛用于在這種類型的單臂多關(guān)節(jié)運動。
關(guān)節(jié)型單臂多關(guān)節(jié)運動結(jié)構(gòu)則是由水平關(guān)節(jié)型和垂直關(guān)節(jié)這2種分類。
(a) 直角坐標(biāo)型 (b) 圓柱坐標(biāo)型 (c) 球坐標(biāo)型 (d) 關(guān)節(jié)型
圖2-1 四種單臂多關(guān)節(jié)運動坐標(biāo)形式
根據(jù)任務(wù)書要求和具體實際我們選擇的是(d) 關(guān)節(jié)型。
具體到本設(shè)計中,因為在該范圍內(nèi)考慮的工件5公斤的處理的設(shè)計要求的質(zhì)量,同時考慮到用數(shù)控機床及的多關(guān)節(jié)臂的動作的具體要求的布局的具體形式過程,以滿足系統(tǒng)的要求,盡量簡化結(jié)構(gòu),降低成本和提高可靠性。臂的運動范圍的多結(jié),單臂運動,和更高的定位精度,臂要求運動多關(guān)節(jié)旨在六個自由度,其具有自由的腰的旋轉(zhuǎn)程度,手臂和俯仰臂自由度度手臂和手腕俯仰的旋轉(zhuǎn)和旋轉(zhuǎn)自由度的自由。在這份文件中,設(shè)計出臂的結(jié)構(gòu)的大小,因此,需要獲得該臂的機構(gòu)的詳細圖的旋轉(zhuǎn)自由的一大關(guān)節(jié)臂俯仰自由。
單臂多關(guān)節(jié)運動的特點是工作范圍比較大,具有靈活性和多功能性,更緊湊的結(jié)構(gòu),可以抓住基地附近的對象。合作單位提出使用和特性以下技術(shù)參考
技術(shù)要求:(1) 所設(shè)計的單臂多關(guān)節(jié)運動系統(tǒng),旨在滿足攜帶沉重的動作周期的多臂關(guān)節(jié)運動系統(tǒng)短,效率高,速度快,和通用性,靈活性要求和其他性能,同時滿足技術(shù)結(jié)構(gòu),經(jīng)濟等方面的要求。 (2)裝配圖,繪制零件圖應(yīng)嚴(yán)格按照機械設(shè)計,尺寸,公差,形位公差國家標(biāo)準(zhǔn),標(biāo)注必須是合理的技術(shù)要求,規(guī)范。 (3)機器人手臂末端與保持器的聯(lián)接器的端部執(zhí)行各種方便。 (4)論文書寫要求描述清楚,書寫規(guī)范。
2.6 本章小結(jié)
本章主要完成對單臂多關(guān)節(jié)運動系統(tǒng)設(shè)計,通過多種方案的選擇來確定最終要確定的方案. 確定了單臂多關(guān)節(jié)運動的總體設(shè)計方案后,就要針對單臂多關(guān)節(jié)運動的腰部、手臂、手腕、末端執(zhí)行器等各個部分進行詳細設(shè)計。
第3章 單臂多關(guān)節(jié)運動大臂結(jié)構(gòu)
3.1 大臂部結(jié)構(gòu)設(shè)計的基本要求
臂構(gòu)件是一個主要組成部分的單臂多關(guān)節(jié)運動關(guān)節(jié)。它的作用是手的支持,并促進其目標(biāo)的運動臂部,手柄部分的范圍內(nèi)任意移動改變手的位置(方位角),關(guān)節(jié)臂部自由度,因此通常臂部的基本條件:
通常,這是一個彎曲的臂部(不只是在一個方向彎曲),而且還通過橫截面形狀的選擇和扭轉(zhuǎn),扭轉(zhuǎn)剛度明顯的情況下,基本上相同的橫截面積和單位重量的鋼管;
慣性矩鋼和字線,圓的。所以,單臂多關(guān)節(jié)運動關(guān)節(jié)常被用作導(dǎo)桿用無縫鋼管、工字鋼或通道支撐鋼,從而形狀規(guī)則。一個中空的內(nèi)部,也可以設(shè)置驅(qū)動裝置,提高臂的剛度,大大降低了手臂的重量,
(2)運動速度的臂部分必須是高,低慣性
一般來說,手臂勻速運動,但在立即停止運動,是可變的,以減少沖擊要求的啟動時間,加速和減速結(jié)束前不能太大,否則會造成的沖擊和振動。
為了減少轉(zhuǎn)動慣量,應(yīng)采取以下措施:
(一)減輕體重,臂,工件的運動,采用鋁合金材料,強度高,重量輕;
(C)降低回轉(zhuǎn)半徑
(d)驅(qū)動系統(tǒng)設(shè)有緩沖裝置
(3)手臂動作應(yīng)靈活。
為了減少摩擦阻力元件之間的手臂運動,并盡可能與滾動摩擦代替滑動摩擦。
(4)位置精度高。
鋁合金材料設(shè)計的薄壁零件,一方面,確保剛性機械臂,單臂多關(guān)節(jié)運動臂的重量可以減少,另一方面,減輕關(guān)節(jié)電機的基礎(chǔ),提高動態(tài)響應(yīng)的手臂,砂型鑄造鑄件壁厚的最小壁每個鑄造合金是適當(dāng)?shù)?,壁厚不同的澆注鑄造合金鑄造的最小壁厚”是不相同的,多樣性和大小主要取決于合金鑄件
見表4.1所示:
表4.1 砂型鑄造鑄件最小壁厚計(mm)
以上介紹的砂鑄造結(jié)構(gòu)設(shè)計的特點,在特殊的鑄造方法,將鑄件結(jié)構(gòu)設(shè)計相應(yīng)的各種鑄造方法及其鑄造機械臂殼體鑄造鋁合金具體尺寸見裝配圖。
3.2 大臂部結(jié)構(gòu)設(shè)計
大臂殼體采用鑄鋁,質(zhì)量輕,方形結(jié)構(gòu),強度大。
3.3 大臂電機及減速器選型
假設(shè)小臂及腕部重量:
M2=20Kg, M3=40Kg
J2=M2L42+M3L52 =10×0.0972+40×0.1942
=1.6kg.m2
假設(shè)大臂速度為10r/min ,
則旋轉(zhuǎn)開始時的轉(zhuǎn)矩
表示如下:
式中:T - 旋轉(zhuǎn)開始時轉(zhuǎn)矩 N.m
J – 轉(zhuǎn)動慣量 kg.m2
- 角加速度rad/s2
使單臂多關(guān)節(jié)運動大臂
從到所需的時間為:則:
(3.4)
若考慮繞單臂多關(guān)節(jié)運動手臂的各部分重心軸的轉(zhuǎn)動慣量及摩擦力矩,
則旋轉(zhuǎn)開始時的啟動轉(zhuǎn)矩可假定為10N.m,取安全系數(shù)為2,
則諧波減速器所需輸出的最小轉(zhuǎn)矩為:
(3.5)選擇諧波減速器:
⑴型號:XB3-50-120 (XB3型諧波減速器)
額定輸出轉(zhuǎn)矩:20N.m
減速比:i1=120
設(shè)傳遞效率為:,步進電機應(yīng)輸出力矩為:
(3.6)
選擇BF反應(yīng)式步進電機
型號:55BF003
靜轉(zhuǎn)矩:0.686N.m
步距角:1.5°
3.4 減速器參考數(shù)據(jù)的計算
剛性和柔性輪是鍛鋼,齒輪鋼材料淬火硬度250hbs?45)
剛性輪硬度220hbs?45)。
1.齒數(shù)的確定
柔輪齒數(shù):
剛輪齒數(shù):
已知模數(shù):,則
柔輪分度圓直徑:
鋼輪分度圓直徑:
柔輪齒圈處的厚度:
重載時,為了增大柔輪的剛性, 允許將δ1計算值增加20%,即
柔輪筒體壁厚:
為了提高柔輪的剛度,取
輪齒寬度:
輪轂凸緣長度:取
柔輪筒體長度:
輪齒過渡圓角半徑:
為了減少應(yīng)力集中,以提高柔輪抗疲勞能力,取
軸的計算校核
畫軸的受力如圖所示:
已知:作用在剛輪上的
圓周力
徑向力
法相力
1) 求垂直面的支撐反力:
2) 水平面的支撐反力:
3) F在支撐點產(chǎn)生的反力:
可按最不利考慮
繪垂直面的彎矩圖:
5) 繪水平面的彎矩圖:
6) F產(chǎn)生的彎矩圖:
a-a截面F力產(chǎn)生的彎矩為:
7) 求合成彎矩圖:
考慮最不利的情況,把與直接相加
MA=+MAF=
+41.1=70.1 N.m
M'A=+MAF=
+41.1=657 N.m
8) 求軸傳遞的轉(zhuǎn)矩:
N.mm
9) 求危險截面的當(dāng)量轉(zhuǎn)矩
如圖所示,a-a截面最危險,其當(dāng)量轉(zhuǎn)矩為:
如認為軸脈動循環(huán)應(yīng)變力,取折合系數(shù)a=0.6,
帶入上式可得:
10) 計算危險截面處軸的直徑
軸選用45鋼材料,調(diào)質(zhì)處理,
查得δB=650Mp,由表 14-3查得[δ-1b]=60Mpa,則:
考慮到鍵槽影響軸的尺寸,將d值加大5%,故:
d=22.8*1.05=24mm<32mm
滿足條件
因a-a處剖面左側(cè)彎矩大,有轉(zhuǎn)矩
,且有鍵槽,故a-a左側(cè)為危險截面
其彎曲截面系數(shù)為:
抗扭截面系數(shù)為:
彎曲應(yīng)力為:
扭切應(yīng)力為:
根據(jù)合成強度計算
使轉(zhuǎn)換系數(shù)=0.6的當(dāng)量應(yīng)力:由表查得45鋼調(diào)質(zhì),抗拉強度極限=640Mpa,則由表查得軸應(yīng)力[δ-1b]=60Mpa,<[δ-1b],滿足要求。
第4章 單臂多關(guān)節(jié)運動小臂結(jié)構(gòu)設(shè)計
4.1 腕部設(shè)計
腕部使手臂和手的機器人可以連接,支撐和改變手姿態(tài)。
材料強度和剛度的結(jié)構(gòu)連接部分和臂部和手合理,傳感器和控制裝置的合理布局和安裝等等。
根據(jù)自由度的工業(yè)機器人的手腕分類可分為單自由度手腕,手腕上的兩個或三個自由度的手腕。并不是所有的手腕必須有三自由度和工作性能,但根據(jù)實際使用的機器人工業(yè)的要求課題研究設(shè)計機器人手腕的擺動和轉(zhuǎn)動兩個自由度。手腕的兩自由度可以由一個密封件和密封R B由國家聯(lián)合實施Br,或由兩個關(guān)節(jié)的關(guān)節(jié)實現(xiàn)B成分BB,但不是由兩個RR腕關(guān)節(jié)由兩個自由度,因為兩個關(guān)節(jié)功能的R是重復(fù)的,事實上,有著獨特的作用自由設(shè)計要求的手腕,俯仰和déviat離子,即BB在手腕上,如圖所示5.1.en局限性的研究和發(fā)展階段,目前在生產(chǎn)工藝不可能直接驅(qū)動電機,關(guān)節(jié),以減少整體重量的手臂,步進電機在不需要手腕后間接驅(qū)動,底部安裝在臂固定在盤體,然后由兩傳動鏈鏈直接驅(qū)動擺動手腕,另一條鏈傳動帶輪的傳動錐齒輪軸的齒輪傳動的旋轉(zhuǎn)帶動手腕手腕的水平,但可以旋轉(zhuǎn)時產(chǎn)生的額外的擺,但可以通過控制步進電機控制的干擾。
4.2 手腕偏轉(zhuǎn)驅(qū)動計算
手腕的偏轉(zhuǎn)是靠安裝在大臂步進電機驅(qū)動,通過帶輪、兩級傳動鏈,然后通過錐齒輪嚙合傳動的偏振方向變化的手腕的驅(qū)動力來自步進電機,首先計算所需要的力矩偏轉(zhuǎn)的手腕,然后計算出電機的輸出轉(zhuǎn)矩,確定型步進電機,從而計算參考數(shù)據(jù)設(shè)計鏈傳動和齒輪傳動和尺寸。
(1) 選擇步進電機
(2) 手腕偏轉(zhuǎn)時,需要克服摩擦阻力矩、慣性力矩負荷啟動力矩時的強度和手腕。
根據(jù)轉(zhuǎn)矩的計算公式[15]:
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
式中:
—手腕偏轉(zhuǎn)所需力矩(N·m);
—摩擦阻力矩(N·m);
—負載阻力矩(N·m);
—手腕偏轉(zhuǎn)啟動時慣性阻力矩(N·m);
—工件負載對手腕轉(zhuǎn)動慣量(kg·m2);
—手腕部分轉(zhuǎn)動慣量(kg·m2);
—手腕偏轉(zhuǎn)角速度(rad/s);
—手腕質(zhì)量(kg);
—負載質(zhì)量(kg);
—啟動時間(s);
—手腕部分材料密度(kg/m3);
—手腕部分外徑和內(nèi)徑(m);
—手腕的長度(m);
—手腕偏轉(zhuǎn)末端的線速度(m/s)。
根據(jù)已知條件:kg,m/s,m,m,m,s,手腕部分采用的材料假定為鑄鋼,密度kg/m3。
將數(shù)據(jù)代入計算得:
kg
r/s
kg·m2
kg·m2
N·m
N·m
N·m
因為腕部通過兩級一級錐齒輪、帶輪傳動實現(xiàn)的,所以查取手冊[15]得:
彈性聯(lián)軸器傳動效率;
滾子鏈傳動效率;
滾動軸承傳動效率(一對);
錐齒輪傳動效率;
計算得傳動的裝置的總效率。
電機在工作中實際要求轉(zhuǎn)矩 N·m (3.9)
根據(jù)計算轉(zhuǎn)矩偏轉(zhuǎn)手腕的要求,基于頻率特性曲線的技術(shù)數(shù)據(jù)和生產(chǎn)對北京和利時電機科技有限公司五相混合式步進電動機90系列,例如,3.3和圖3所示的步驟,選擇90BYG5200B-SAKRML-0301步進電機類型。
圖5.3 90BYG步進電機技術(shù)數(shù)據(jù)
圖5.4 90BYG5200B-SAKRML-0301型步進電機矩頻特性曲線
4.3 軸分析及計算
軸的受力模型簡化(見圖7)及受力計算
圖 軸的受力分析知:
4.4 軸承的壽命校核
考慮到實際的調(diào)整空間,采用軸承。默認情況下,軸承壽命在12480h 3年。
校核步驟及計算結(jié)果見下表:
表1 軸承壽命校核步驟及計算結(jié)果
計算步驟及內(nèi)容
計算結(jié)果
6014
A端
B端
由手冊查出Cr、C0r及e、Y值
Cr=98.5kN
C0r=86.0kN
e=0.68
計算比值Fa/Fr
FaA /FrA e
確定X、Y值
XA=1 YA =0
查載荷系數(shù)fP
1.2
計算當(dāng)量載荷
P=Fp(XFr+YFa)
PA=5796.24 PB=6759.14
計算軸承壽命
763399h
大于
12480h
計算6014ac軸承,6007軸承均合格,最終選擇6014軸承。
4.5 軸的強度校核
在分析過程中,C、D兩處可能的危險截面,
現(xiàn)來校核這兩處的強度:
(1)、合成彎矩
(2)、扭矩T圖
(3)、當(dāng)量彎矩
(4)、校核
由手冊查材料45的強度參考數(shù)據(jù)
C截面當(dāng)量彎曲應(yīng)力:
由計算結(jié)果可見C截面安全。
每個軸鍵、鍵槽的選擇及其校核
由于減速裝置中的鏈路連接是靜態(tài)的,因此,只有通過驗證的壓應(yīng)力。
電機連接,選擇和檢查:
連接帶滑輪:根據(jù)軸的直徑和長度在軸選鍵鍵長b8x7?50?GB?/?t1096
作為連接材料,分別為:45鋼、40Cr(關(guān)鍵)(樹)
(1)在輪剛性連接:根據(jù)軸徑和中心軸線的選擇鍵b14x9gb?/?t1096
作為連接材料,分別為(中心):很,45鋼(關(guān)鍵),非常(樹)
現(xiàn)在,耦合的關(guān)鍵技能。
(2)輸出軸鍵:按直徑聯(lián)接軸和軸的長度選擇鍵鍵長16×10、100?Gb?/?t1096
作為連接材料,分別為:45鋼(耦合器),45鋼(關(guān)鍵),45(樹)
其中鍵的的強度最低,所以其許用應(yīng)力進行校核,查手冊其
該鍵聯(lián)結(jié)合格.
第5章 單臂多關(guān)節(jié)運動機身設(shè)計
結(jié)構(gòu)設(shè)計系統(tǒng)組件的機身。
(1)設(shè)計的支架結(jié)構(gòu)
主支撐架的所有部分的重量負荷對左手臂大臂、平衡彈簧設(shè)計固定連接孔,右端與驅(qū)動電機設(shè)計的支撐臂。偏心力在考慮設(shè)計合理的機身旋支撐圓盤,使其旋轉(zhuǎn)更平衡e.afin減輕重量,zl401材料。
(2)機座設(shè)計
機械加工軸對應(yīng)的位置固定軸承座,其他沒有特殊的要求。
室內(nèi)設(shè)計主體系統(tǒng)的計算和驗證設(shè)計傳動系統(tǒng)各部件,其設(shè)計計算的主要參考《機械設(shè)計》
機身系統(tǒng)的內(nèi)部設(shè)計主要是對傳動系統(tǒng)的各部件進行設(shè)計計算與校核,其設(shè)計計算主要參照《機械設(shè)計》[14]。
5.1步進電機選擇
1 計算輸出軸的轉(zhuǎn)矩
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
——慣性力矩
——摩擦力矩
——輸出軸轉(zhuǎn)動角速度
——大臂轉(zhuǎn)動慣量
——小臂轉(zhuǎn)動慣量
——機身自身轉(zhuǎn)動慣量
——啟動時間
=0.5s
=0.8m/s
=0.5m
1.6 rad/s
當(dāng)臂之間的位置關(guān)系的尺寸如圖3中的位置時,手臂的位置操作可以達到極限,此時需要的最大值。
圖3.1 大小臂極限尺寸
計算出的大臂質(zhì)量及相關(guān)大臂相對中心線oa的垂直距離得出:
=400mm,
=30kg,
代入式(3.5)得:
=1.6kgm
由算出的小臂質(zhì)量及相關(guān)小臂相對oa線的垂直距離得出:
=1000mm,
m=20kg,
代入式(3.5)得:
=6.67kgm
m
計算相關(guān)機身設(shè)計數(shù)值得出:kg
代入式(3.6)得:
=5.75kgm
代入(3.2)得到=44.86Nm 帶入(3.1)得到
=49.85Nm
= =6.86Nm
選擇二級圓柱齒輪減速器i=9
(3.7)
=0.99 ——聯(lián)軸器傳動效率
=0.96 ——齒輪傳動效率
=0.98 ——軸承傳動效率
代入式(3.7)得到:
0.807
2 確定各軸傳動比
總傳動比=9 ,根據(jù)推薦的傳動副傳動比合理范圍,?。?
高速級傳動比=3 ,低速級傳動比=3
3 傳動裝置的運動和動力參考數(shù)據(jù)
由圖3.2,各軸由高速至低速依次設(shè)計為Ⅰ軸(輸入軸)、Ⅱ軸(中間軸)、Ⅲ軸(輸出軸)。
圖3.2 傳動示意簡圖
各軸轉(zhuǎn)速
(3.8)
(3.9)
=1.6rad/s
=15.3r/min
代入式(3.8)、式(3.9)得:
45.9r/min,137.7r/min
轉(zhuǎn)矩計算
(3.10)
49.85Nm
代入式(3.7)得:
17.7Nm
同理得到:
=17.7Nm
=6.27Nm
=6.66Nm
北京和利時電機電器有限公司的一些步進電機技術(shù)參如表3.1。
表3.1 步進電機產(chǎn)品系列及技術(shù)參考數(shù)據(jù)
型號
相數(shù)
步距角
(DEG.)
電壓
(V)
電流
(A)
靜轉(zhuǎn)矩
(N.m)
空載運行頻率
(KHZ)
轉(zhuǎn)動慣量
(Kg.cm2)
備注
86BYG250AN
2
0.9°/1.8°
110
3.6
2.4
≥15
0.56
86BYG250BN
2
0.9°/1.8°
110
4
5.0
≥15
1.2
86BYG250CN
2
0.9°/1.8°
110
5
7.0
≥15
4.28
利時電機有限公司轉(zhuǎn)矩曲線的運行矩頻特性曲線階梯型86BYG250CN和步進電機圖3.3。
圖3.3 運行矩頻特性
由計算得到所需:
=6.86Nm,137.7r/min
該電機可以滿足要求。
北京和利時電機電器有限公司86BYG250CN型步進電機的外型簡圖如圖3.4。
圖3.4 步進電機外形簡圖
根據(jù)前面計算,選擇北京和利時電機電器廠的86BYG250CN型步進電機。
由電機輸出軸尺寸選擇TL2型彈性套柱銷聯(lián)軸器,主從動端均選用型軸孔[16]。
5.2鍵的選擇和校核
1 鍵的選擇
根據(jù)齒輪和軸的參考數(shù)據(jù),參考《機械設(shè)計》選擇設(shè)計鍵。
電機輸出軸鍵:;
中間軸的鍵Ⅰ:;
輸出軸的鍵Ⅱ:。
2 鍵的校核
鍵45鋼材料,
查得許用擠壓應(yīng)力MPa
根據(jù)公式
(3.25)
得到:
鍵Ⅰ:工作長度mm,接觸高度3.3mm,17.7Nm
25.5MPa,安全。
鍵Ⅱ:工作長度mm,接觸高度3.8mm,49.85Nm
23.9MPa,安全。
5.3 機身結(jié)構(gòu)的設(shè)計
1、選擇機身箱體材料動作,制造工藝要求不高,選擇HT250灰鑄鐵制造。在灰鑄鐵凝固收縮率小,抗沖擊性能好。這可以提高機身其穩(wěn)定性制造,以及經(jīng)濟性。
2、考慮加工工藝設(shè)計
機身結(jié)構(gòu)決定了其形狀較為復(fù)雜,所以使用鑄造的方法協(xié)調(diào)內(nèi)部零件,便于安裝,右上打開蓋子。因為這是一個發(fā)動機的水平放置,考慮到電機的質(zhì)量,在左側(cè)板支撐發(fā)動機。電機軸延伸,連接和錐齒輪軸的一端連接,實現(xiàn)以錐齒輪與輸入軸滿足傳輸要求改變電機的伸出軸用聯(lián)軸器輸入三輸出軸中間垂直放置,實現(xiàn)兩級減速傳動。由于車輪懸架所需的圓螺母和墊圈,由于齒輪懸置對穩(wěn)定的基本設(shè)計可用圓形,沉頭螺釘和行走機構(gòu)連接。
總結(jié)與展望
總結(jié)本文對單臂多關(guān)節(jié)運動結(jié)構(gòu)系統(tǒng)進行了設(shè)計,由于作者的水平有限,對相關(guān)議題,如技術(shù)和控制技術(shù)的傳感器是不好的,仍有許多問題需要解決,還有許多問題值得進一步討論和更深入的研究和展望:
(1)優(yōu)化問題的機械結(jié)構(gòu)
在機器人的設(shè)計方法,包括機械臂,采用模塊化設(shè)計,不同的設(shè)計結(jié)構(gòu)和各功能模塊之間的連接,分別優(yōu)化模式。但在每個模塊的零件設(shè)計,計算參考數(shù)據(jù)選取主要結(jié)構(gòu)的強度和剛度的基本要求,許多零件配合的實際需求,大很多。設(shè)計包括非核心部分,是根據(jù)前人的實驗設(shè)計,選擇大小。這種設(shè)計不僅可以提高整體素質(zhì)系統(tǒng),增加發(fā)動機負荷,造成資源的浪費。
(2)有限元分析的計算機沒有更深入。通過有限元法對計算機軟件的一部分,力學(xué)分析的強度、剛度和最佳的臂部結(jié)構(gòu)。這可以作為后續(xù)研究的方向。
(3)機械臂控制系統(tǒng)必須研究和自主技術(shù),運動控制,路徑規(guī)劃技術(shù),視覺技術(shù)實時導(dǎo)航定位技術(shù)和數(shù)據(jù)融合技術(shù)的多傳感器組合,計算技術(shù),高性能問題,因為無線通信技術(shù),特別是網(wǎng)絡(luò)也有待研究。
單臂多關(guān)節(jié)運動在未來生活中的應(yīng)用越來越廣泛。包括在軍事領(lǐng)域的應(yīng)用是必然的發(fā)展方向之一,我們的工業(yè)和科學(xué)技術(shù)的關(guān)鍵是系統(tǒng)設(shè)計中的機械臂,部分地區(qū)是累了整個系統(tǒng)的設(shè)計經(jīng)驗比較豐富,我相信,通過不斷的發(fā)展和完善的單臂多關(guān)節(jié)運動和成熟的做法。
致 謝
最后學(xué)習(xí)階段的畢業(yè)設(shè)計,首先我要特別感謝我的導(dǎo)師關(guān)愛無限和指導(dǎo)。過了許久,終于比較成功地完成了設(shè)計任務(wù)?;仡櫲杖找挂?,我脾氣后的感覺,通過方法的書籍,網(wǎng)絡(luò),教師,學(xué)生和其他可用,鞏固了自己的專業(yè)知識。理解和運用所學(xué)知識有更深刻的認識。
在這一刻,我要感謝我的導(dǎo)師的精心指導(dǎo)下,不僅指導(dǎo)我們解決的關(guān)鍵技術(shù)問題,更重要的是為我們引導(dǎo)設(shè)計思路,并解釋我們在實際的工程設(shè)計經(jīng)驗應(yīng)用于設(shè)計因此,不僅如此,教師的敬業(yè)精神深深地感染了我,我愛和未來奉獻骨刺的工作,導(dǎo)師是真的做的傳道,授業(yè),解惑。
精心準(zhǔn)備的長途跋涉大學(xué)幾個月了,終于到了時間的論文計劃期間,像往常一樣,救援的心臟,但寫作過程中的感覺經(jīng)常出現(xiàn)無力折騰和徘徊。先花那么多時間和這么多精力去完成的論文具有一定的學(xué)術(shù)價值,這是很難說的艱辛和困難,但曲終要離開的味道幕后,這是值得我一生留連忘返。
敲完最后一個字符,再次從仔細閱讀文本已經(jīng)并不陌生,我感覺好多。雖然不是特別值得一提的成就來炫耀,但對我來說,是寶貴的。這是無數(shù)的教誨,關(guān)心他人,樂于助人的結(jié)果。
我要感謝我的導(dǎo)師XX老師。雖然教師負責(zé)教學(xué),科研任務(wù),還需要一段時間,不時有門,叫我勸功課,從第一稿到最終版本,耐心,再審,大章偏頗布局,小一審缺陷報表格式,都可以指出。他教我各方面的知識,拓寬我的知識,培養(yǎng)我的技能,完成論文是不無裨益。我還要感謝所有的大學(xué)老師教給我的,是你讓我成熟和壯大;感謝學(xué)院的工作人員,他的細致工作,讓我的同學(xué),有序的學(xué)習(xí)和生活。
我的父母和家人想表達我誠摯的謝意。他們是我的生命永遠依靠和支持他們的關(guān)懷和愛護,是我前進的動力;他們的殷切希望,激勵著我繼續(xù)說下去。沒有他們就沒有我,我的成績已經(jīng)從他們來的點點滴滴。
我也舍不得你的好友,與門和室友。我需要幫助時,他們伸出溫暖的手,在最大的幫助。他們可以見面,相交,相知是人生一大幸事。
本論文的完成遠未結(jié)束,不足和膚淺的地方的文字是我的新征程的新起點。
我會繼續(xù)前進!
我們也感謝其他同學(xué),老師和同事們的熱心幫助,感謝我們的教師的重視和關(guān)注課程設(shè)計的領(lǐng)導(dǎo),為我們提供了繪圖工具和選項。
參 考 文 獻
[1] 包志軍. 關(guān)節(jié)單臂多關(guān)節(jié)運動運動特性研究[D]. 上海交通大學(xué)博士論文 .2000:
14-48.
[2] 姜山,程君實,陳佳品,包志軍. 基于遺傳算法的單臂多關(guān)節(jié)運動步態(tài)優(yōu)
化[J].上海交通大學(xué)學(xué)報. 1999,vo1.33(10): 1280~1283 .
[3] 劉志遠. 單臂多關(guān)節(jié)運動動態(tài)研究[D]. 哈爾濱工業(yè)大學(xué)博士論文. 1991.
[4] 劉志遠,戴紹安,裴潤,張栓,傅佩深. 零力矩點與單臂多關(guān)節(jié)運動動態(tài)穩(wěn)
定性的關(guān)系[J]. 哈爾濱工業(yè)大學(xué)學(xué)報. 1994,vol.26(1):38~42.
[5] 紀(jì)軍紅. HIT-I單臂多關(guān)節(jié)運動步態(tài)規(guī)劃研究[D]. 哈爾濱工業(yè)大學(xué)博士論
文,2000:15~71.
[6] 麻亮,紀(jì)軍紅,強文義,傅佩深. 基于力矩傳感器的雙足單臂多關(guān)節(jié)運動在線模糊步
態(tài)調(diào)整器設(shè)計[J]. 控制與決策. 2000,Vol.15(6):734~736.
[7] 竺長安. 單臂多關(guān)節(jié)運動系統(tǒng)分析、設(shè)計及運動控制[D]. 國防科技大學(xué)博
士論文. 1992.
[8] 馬宏緒. 單臂多關(guān)節(jié)運動動態(tài)研究[D]. 國防科技大學(xué)博士論文. 1995.
[9] 馬宏緒,應(yīng)偉福,張彭
收藏