離散數(shù)學試題及答案 .doc
《離散數(shù)學試題及答案 .doc》由會員分享,可在線閱讀,更多相關《離散數(shù)學試題及答案 .doc(11頁珍藏版)》請在裝配圖網上搜索。
離散數(shù)學考試試題(A卷及答案) 一、(10分)某項工作需要派A、B、C和D 4個人中的2個人去完成,按下面3個條件,有幾種派法?如何派? (1)若A去,則C和D中要去1個人; (2)B和C不能都去; (3)若C去,則D留下。 解 設A:A去工作;B:B去工作;C:C去工作;D:D去工作。則根據(jù)題意應有:ACD,(B∧C),CD必須同時成立。因此 (ACD)∧(B∧C)∧(CD) (A∨(C∧ D)∨(C∧D))∧(B∨C)∧(C∨D) (A∨(C∧ D)∨(C∧D))∧((B∧C)∨(B∧D)∨C∨(C∧D)) (A∧B∧C)∨(A∧B∧D)∨(A∧C)∨(A∧C∧D) ∨(C∧ D∧B∧C)∨(C∧ D∧B∧D)∨(C∧ D∧C)∨(C∧ D∧C∧D) ∨(C∧D∧B∧C)∨(C∧D∧B∧D)∨(C∧D∧C)∨(C∧D∧C∧D) F∨F∨(A∧C)∨F∨F∨(C∧ D∧B)∨F∨F∨(C∧D∧B)∨F∨(C∧D)∨F (A∧C)∨(B∧C∧ D)∨(C∧D∧B)∨(C∧D) (A∧C)∨(B∧C∧ D)∨(C∧D) T 故有三種派法:B∧D,A∧C,A∧D。 二、(15分)在謂詞邏輯中構造下面推理的證明:某學術會議的每個成員都是專家并且是工人,有些成員是青年人,所以,有些成員是青年專家。 解:論域:所有人的集合。():是專家;():是工人;():是青年人;則推理化形式為: (()∧()),()(()∧()) 下面給出證明: (1)() P (2)(c) T(1),ES (3)(()∧()) P (4)( c)∧( c) T(3),US (5)( c) T(4),I (6)( c)∧(c) T(2)(5),I (7)(()∧()) T(6) ,EG 三、(10分)設A、B和C是三個集合,則AB(BA)。 證明:AB"x(x∈A→x∈B)∧$x(x∈B∧xA)"x(xA∨x∈B)∧$x(x∈B∧xA) $x(x∈A∧xB)∧"x(xB∨x∈A)$x(x∈A∧xB)∨"x(x∈A∨xB) ($x(x∈A∧xB)∧"x(x∈A∨xB))($x(x∈A∧xB)∧"x(x∈B→x∈A)) (BA)。 四、(15分)設A={1,2,3,4,5},R是A上的二元關系,且R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R)。 解 r(R)=R∪IA={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)=R∪R-1={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>}=R2 t(R)=Ri={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}。 五、(10分)R是非空集合A上的二元關系,若R是對稱的,則r(R)和t(R)是對稱的。 證明 對任意的x、y∈A,若xr(R)y,則由r(R)=R∪IA得,xRy或xIAy。因R與IA對稱,所以有yRx或yIAx,于是yr(R)x。所以r(R)是對稱的。 下證對任意正整數(shù)n,Rn對稱。 因R對稱,則有xR2y$z(xRz∧zRy)$z(zRx∧yRz)yR2x,所以R2對稱。若對稱,則xy$z(xz∧zRy)$z(zx∧yRz)yx,所以對稱。因此,對任意正整數(shù)n,對稱。 對任意的x、y∈A,若xt(R)y,則存在m使得xRmy,于是有yRmx,即有yt(R)x。因此,t(R)是對稱的。 六、(10分)若f:A→B是雙射,則f-1:B→A是雙射。 證明 因為f:A→B是雙射,則f-1是B到A的函數(shù)。下證f-1是雙射。 對任意x∈A,必存在y∈B使f(x)=y(tǒng),從而f-1(y)=x,所以f-1是滿射。 對任意的y1、y2∈B,若f-1(y1)=f-1(y2)=x,則f(x)=y(tǒng)1,f(x)=y(tǒng)2。因為f:A→B是函數(shù),則y1=y(tǒng)2。所以f-1是單射。 綜上可得,f-1:B→A是雙射。 七、(10分)設- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 離散數(shù)學試題及答案 離散 數(shù)學試題 答案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
相關資源
更多
正為您匹配相似的精品文檔
相關搜索
鏈接地址:http://www.3dchina-expo.com/p-12757511.html