電動(dòng)汽車驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)
《電動(dòng)汽車驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《電動(dòng)汽車驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
. 電動(dòng)汽車驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì) 摘 要 驅(qū)動(dòng)系統(tǒng)是電動(dòng)汽車的心臟,也是電動(dòng)汽車研制的關(guān)鍵技術(shù)之一,它直接決定電動(dòng)汽車的性能,本文根據(jù)異步電動(dòng)機(jī)矢量控制理論,結(jié)合電動(dòng)汽車的實(shí)際要求,研究設(shè)計(jì)基于無(wú)速度傳感器矢量控制的電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)。矢量控制通過(guò)坐標(biāo)變換將定子電流矢量分解為轉(zhuǎn)子磁場(chǎng)定向的兩個(gè)直流分量并分別加以控制,從而實(shí)現(xiàn)異步電動(dòng)機(jī)磁通和轉(zhuǎn)矩的解耦控制,已達(dá)到直流電動(dòng)機(jī)的控制效果。最后,在Matlab環(huán)境中建立了仿真系統(tǒng),驗(yàn)證了無(wú)速度傳感器矢量控制系統(tǒng)原理應(yīng)用于電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的可行性。 關(guān)鍵詞:電動(dòng)汽車;驅(qū)動(dòng)系統(tǒng);異步電動(dòng)機(jī);無(wú)速度傳感器矢量控制 ABSTRACT Driving system is the heart of EV and one of the key parts of the vehicle that determines the performance of the EV directly. According to the control technique、the method of induction motor drive system and based on the factual requirement of EV, the speed sensorless vector control was designed in this article. By transforming coordinate, the stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively, So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Finally, intimation system is established in the environment of Matlab to validate these control arithmetic. The system proved its enormous practical value of application. Key words: EV; Drive system; Induction motor; speed sensorless vector control . . 目 錄 第1章 緒論 1 1.1 引 言 1 1.2 燃料汽車和電動(dòng)汽車的對(duì)比 1 1.3 電動(dòng)汽車的發(fā)展現(xiàn)況 2 第2章 常用的幾種驅(qū)動(dòng)系統(tǒng) 3 2.1 驅(qū)動(dòng)系統(tǒng)電機(jī)的選擇 3 2.2常見(jiàn)的幾種驅(qū)動(dòng)系統(tǒng) 6 第3章 異步電機(jī)矢量控制原理 7 3.1 三相異步電動(dòng)機(jī)的多變量非線性數(shù)學(xué)模型 7 3.2 坐標(biāo)變換 8 3.3 三相異步電動(dòng)機(jī)在兩相坐標(biāo)系上的數(shù)學(xué)模型 9 3.4 異步電機(jī)的矢量控制 9 3.5 按轉(zhuǎn)子磁鏈定向的矢量控制方程及其解耦作用 10 3.6 無(wú)速度傳感器矢量控制系統(tǒng) 12 第4章 基于MATLAB的電動(dòng)汽車矢量控制系統(tǒng)仿真 12 4.1 基于電流模型磁鏈估計(jì)的控制系統(tǒng)仿真 12 4.2 基于電壓模型的無(wú)速度傳感器矢量控制系統(tǒng) 14 4.3 仿真結(jié)果分析 15 第5章 結(jié)束語(yǔ) 19 致 謝 20 參考文獻(xiàn) 21 . 第1章 緒 論 1.1 引 言 電動(dòng)汽車是一種電力驅(qū)動(dòng)的道路交通工具,其包括了電池電動(dòng)汽車,混合動(dòng)力電動(dòng)汽車和燃料電池電動(dòng)汽車等。在第一輛電池電動(dòng)汽車問(wèn)世至今以來(lái),電動(dòng)汽車的發(fā)展幾經(jīng)沉浮,并隨著科技和社會(huì)的進(jìn)步跨越了不同的時(shí)代。 至人類社會(huì)進(jìn)入20世紀(jì)以來(lái),能源危機(jī)和環(huán)境污染問(wèn)題成了世界各國(guó)面臨的兩大難題。 1.2 燃料汽車和電動(dòng)汽車的對(duì)比 電動(dòng)汽車以蓄電池的電能為動(dòng)力,在行駛時(shí)幾乎沒(méi)有廢氣排出,比燃油汽車減少92%-98%,是最被看好的“零污染”汽車。因此,電動(dòng)汽車的使用時(shí)為解決環(huán)境污染問(wèn)題提供了很好的一條途徑。 表1-1比較了燃料汽車和電動(dòng)汽車的廢氣排放(主要成分)。表格1-1資料來(lái)源:《國(guó)家重大科技產(chǎn)業(yè)工程項(xiàng)目電動(dòng)汽車實(shí)施方案》。 表 1-1 電動(dòng)汽車與燃油汽車的廢氣排放比較(g/km) 廢氣組成 燃油汽車 電動(dòng)汽車 CO 17.0 0 HC 2.7 0 NOX 0.74 1(0.023) CO2 320 0(130) 注:括號(hào)的數(shù)據(jù)考慮了電廠排放的廢氣 表格1-2列出了未安裝防護(hù)設(shè)備汽車的排放系數(shù),這些事汽車在產(chǎn)生區(qū)域以平均40.233 6km/h時(shí)速為基礎(chǔ)的平均排放系數(shù)。資料來(lái)源:《大氣污染影響評(píng)價(jià)實(shí)用技術(shù)》。 表1-2 未安裝防護(hù)設(shè)備汽車的排放系數(shù)(g/車,km) 排放物質(zhì) 燃油汽車排放系數(shù) 電動(dòng)汽車排放系數(shù) 甲醛 0.87 0 一氧化碳 46.50 0 碳?xì)浠衔? 3.52 0 氮氧化合物 2.40 0 硫氧化合物 2.40 0 有機(jī)酸(醋酸) 0.87 0 有機(jī)酸(醋酸) 0.224 0 在表格1-3中所示,重量為1 000kg的傳統(tǒng)汽車使用無(wú)鉛汽油所排放的HC、CO、CO2、SO2分別為0.018、0.91、0.077 1、0.004 5—0.045 36kg。其中,電動(dòng)汽車的尾氣排放包含了發(fā)電廠氣體排放量,分為火力發(fā)電廠和天然氣發(fā)電廠兩種情況,意義與燃油汽車相同。表格1-3資料來(lái)源于美國(guó)通用汽車公司電動(dòng)汽車技術(shù)報(bào)告。 表1-3 1000kg燃油汽車與電動(dòng)汽車的排放比較 驅(qū)動(dòng)系 統(tǒng)類型 質(zhì) 量 燃油汽車 (無(wú)鉛汽油) 1 000kg 電動(dòng)汽車 (火力發(fā)電) 1 200kg 電動(dòng)汽車 (天然氣發(fā)電) 1 200kg HC 0.018 0.000 8 0.002 2 CO 0.91 0.009 1 0.018 2 NO2 0.077 1 0.294 8 0.181 4 CO2 83 91 41 SOX 0.004 5-0.453 6 0.181 4-0.771 1 0.000 3 與燃油汽車相比,電動(dòng)汽車的僅產(chǎn)生少量的電磁噪聲和機(jī)械噪聲,在正常運(yùn)行時(shí),通常比燃油汽車低10—15dB。在表格1-4中比較了兩種汽車在不同時(shí)速下的噪聲情況。 表1-4 燃油汽車和電動(dòng)汽車在不同車速下的噪聲(dB) 噪聲 燃油汽車 電動(dòng)汽車 車內(nèi) 車外 車內(nèi) 車外 勻速 35 73 67 67 66 50 70 69 70 66 加速 50 81 75 72 66 50 76 72 71 66 注:速度單位為:km/h 從表中我們不難發(fā)現(xiàn),電動(dòng)汽車比燃油汽車在環(huán)境指標(biāo)上具有明顯的優(yōu)勢(shì)。 1.3 電動(dòng)汽車的發(fā)展現(xiàn)況 隨著各種科學(xué)技術(shù)的高速發(fā)展和能源環(huán)境問(wèn)題的雙重壓力下,電動(dòng)汽車的研究開(kāi)發(fā)再次進(jìn)入了一個(gè)活躍期,許多技術(shù)難點(diǎn)逐漸得到了解決,世界各大汽車制造商紛紛推出各自的電動(dòng)汽車產(chǎn)品。 本章小結(jié):電動(dòng)汽車擁有和燃料汽車相反的性能,即電動(dòng)機(jī)在環(huán)境、效率等的方面略勝一籌,但是在舒適性、輸出功率大小和價(jià)格等方面較燃料汽車有一定的差距。因此,對(duì)電動(dòng)汽車高性能蓄電池、高效率電動(dòng)機(jī)、電力變流器、驅(qū)動(dòng)系統(tǒng)的開(kāi)發(fā)是未來(lái)電動(dòng)汽車發(fā)展的主要方向。以下幾章將對(duì)電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)做簡(jiǎn)要介紹。 第2章 常用的幾種驅(qū)動(dòng)系統(tǒng) 現(xiàn)在電動(dòng)汽車的核心是高效、清潔和智能化的利用電能驅(qū)動(dòng)車輛。其關(guān)鍵技術(shù)包括汽車制造技術(shù)、電子技術(shù)、信息技術(shù)、能源技術(shù)、電力驅(qū)動(dòng)技術(shù)、自動(dòng)控制技術(shù)等等。 2.1 驅(qū)動(dòng)系統(tǒng)電機(jī)的選擇 電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)由能源供給系統(tǒng)、電力驅(qū)動(dòng)系統(tǒng)和機(jī)械傳動(dòng)系統(tǒng)組成。選擇最佳的驅(qū)動(dòng)系統(tǒng)是設(shè)計(jì)電動(dòng)汽車的關(guān)鍵,而電動(dòng)機(jī)的性能直接決定著驅(qū)動(dòng)系統(tǒng)的性能,因此電動(dòng)機(jī)的選擇成為設(shè)計(jì)電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的主要基礎(chǔ),目前有一系列類型的電動(dòng)機(jī)均可作為電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的電動(dòng)機(jī),具體如下所述。 電動(dòng)汽車在不同的歷史時(shí)期采用了不同的電動(dòng)機(jī)作為驅(qū)動(dòng)電機(jī),電動(dòng)汽車用電動(dòng)機(jī)有各種種類。直流電動(dòng)機(jī)由于控制性能好最早在電動(dòng)汽車中獲得應(yīng)用。 1)他勵(lì)直流電動(dòng)機(jī) 他勵(lì)直流電動(dòng)機(jī)的勵(lì)磁繞組和電樞繞組分別由不同的電源供電,圖2-1為他勵(lì)直流電動(dòng)機(jī)的等效電路。當(dāng)勵(lì)磁繞組接到一個(gè)恒定的電源時(shí),通過(guò)調(diào)節(jié)Rf的大小,可以調(diào)節(jié)勵(lì)磁電流的大小。 圖2-1 他勵(lì)直流電動(dòng)機(jī)等效電路 他勵(lì)直流電動(dòng)機(jī)穩(wěn)態(tài)運(yùn)行時(shí)的電壓方程為: (2-1) (2-2) 2)串勵(lì)直流電動(dòng)機(jī) 串勵(lì)直流電動(dòng)機(jī)是將直流電動(dòng)機(jī)的勵(lì)磁繞組和電樞繞組串聯(lián)起來(lái),其電樞電流也是勵(lì)磁電流。為了減小其電壓降,繞組采用電阻較低的繞圈繞成。 圖2-2為串勵(lì)直流電動(dòng)機(jī)的等效電路圖。 圖2-2串勵(lì)直流電動(dòng)機(jī)等效電路圖 3)并勵(lì)直流電動(dòng)機(jī) 并勵(lì)直流電動(dòng)機(jī)的電樞繞組和勵(lì)磁繞組接線方式如圖2-3所示。 圖2-3 并勵(lì)直流電動(dòng)機(jī)等效電路 4)復(fù)勵(lì)直流電動(dòng)機(jī) 復(fù)勵(lì)直流電動(dòng)機(jī)的勵(lì)磁繞組具有串勵(lì)和并勵(lì)的特點(diǎn),如圖2-4所示。在大多數(shù)復(fù)勵(lì)直流電動(dòng)機(jī)運(yùn)行中,并勵(lì)磁場(chǎng)起主導(dǎo)作用,串勵(lì)磁場(chǎng)起輔助作用。 a) 長(zhǎng)并勵(lì)連接方式 b) 短并勵(lì)連接方式 圖2-4 復(fù)勵(lì)直流電動(dòng)機(jī)等效電路 圖2-5 三相交流電動(dòng)機(jī)機(jī)械特性曲線 當(dāng)電機(jī)工作點(diǎn)在第Ⅰ象限時(shí),例如A點(diǎn),電機(jī)為正向電動(dòng)運(yùn)行狀態(tài) (如驅(qū)動(dòng)電動(dòng)汽車前進(jìn));當(dāng)工作點(diǎn)在第Ⅲ象限時(shí),例如B點(diǎn),電機(jī)為反向電動(dòng)運(yùn)行狀態(tài) (如電動(dòng)汽車倒車)。電動(dòng)運(yùn)行狀態(tài)下,電磁轉(zhuǎn)矩為驅(qū)動(dòng)轉(zhuǎn)矩。 當(dāng)電動(dòng)汽車下坡時(shí),汽車往往需要制動(dòng),交流電動(dòng)機(jī)的再生制動(dòng)如圖2-6所示。當(dāng)電機(jī)運(yùn)行速度不斷增大,最后超過(guò)同步轉(zhuǎn)速而穩(wěn)定運(yùn)行于B點(diǎn),此時(shí),,系統(tǒng)處于再生制動(dòng)狀態(tài)。 圖2-6 三相交流電動(dòng)機(jī)再生制動(dòng) 而異步電機(jī)在當(dāng)今社會(huì)中被廣泛應(yīng)用,其特性如下所示。根據(jù)電機(jī)學(xué)原理,異步電動(dòng)機(jī)在下述三個(gè)假定條件下:a.忽略空間和時(shí)間諧波;b.忽略磁飽和;c.忽略鐵損,其穩(wěn)態(tài)等效電路如圖2-7所示。 圖2-7 異步電動(dòng)機(jī)的穩(wěn)態(tài)等效電路 2.2常見(jiàn)的幾種驅(qū)動(dòng)系統(tǒng) 現(xiàn)代電動(dòng)汽車是融合了電力、電子、機(jī)械控制、材料科學(xué)以及化工技術(shù)等多種高新技術(shù)的綜合產(chǎn)品。整體的運(yùn)行性能、經(jīng)濟(jì)性等首先取決于電池系統(tǒng)和電機(jī)驅(qū)動(dòng)控制系統(tǒng)。 電動(dòng)汽車的運(yùn)行,與一般的工業(yè)應(yīng)用不同,不但要求電機(jī)驅(qū)動(dòng)系統(tǒng)具有高轉(zhuǎn)矩重量發(fā)。比、寬調(diào)速范圍、高可靠性,而且由于電源功率的限制等,其轉(zhuǎn)矩一轉(zhuǎn)速特性應(yīng)根據(jù)電動(dòng)汽車起動(dòng)、爬坡和行駛等不同階段分為恒轉(zhuǎn)矩區(qū)或恒功率區(qū)。 永磁無(wú)刷電動(dòng)機(jī)系統(tǒng)具有較上述電機(jī)系統(tǒng)更高的能量密度和更高的效率,在電動(dòng)汽車中具有極好的應(yīng)用前景。 本章小結(jié):通過(guò)對(duì)電動(dòng)汽車幾種常用控制方法的對(duì)比,可以看出在當(dāng)今社會(huì)中,交流感應(yīng)電動(dòng)機(jī)驅(qū)動(dòng)系統(tǒng)具有結(jié)構(gòu)簡(jiǎn)單、使用方便、運(yùn)行可靠、效率較高、制造容易、成本低廉的優(yōu)點(diǎn),在電動(dòng)汽車驅(qū)動(dòng)中得到廣泛的應(yīng)用,針對(duì)現(xiàn)實(shí)的使用情況,本文選擇交流異步電動(dòng)機(jī)驅(qū)動(dòng)系統(tǒng)對(duì)電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)進(jìn)行設(shè)計(jì),同時(shí)并對(duì)該系統(tǒng)進(jìn)行仿真,驗(yàn)證其可行性。 第3章 異步電機(jī)矢量控制原理 在電動(dòng)汽車控制系統(tǒng)中,異步電機(jī)的矢量控制實(shí)現(xiàn)了交流電動(dòng)機(jī)磁通和轉(zhuǎn)矩的解耦控制,使其系統(tǒng)的動(dòng)態(tài)特性有了顯著的改善。本章首先闡述異步電動(dòng)機(jī)在三相坐標(biāo)系下的數(shù)學(xué)模型,然后根據(jù)坐標(biāo)變換理論,得到了其在兩相靜止坐標(biāo)系下和兩相同步坐標(biāo)系下的數(shù)學(xué)方程,并介紹了異步電機(jī)的矢量控制原理。 3.1 三相異步電動(dòng)機(jī)的多變量非線性數(shù)學(xué)模型 由于異步電動(dòng)機(jī)的動(dòng)態(tài)數(shù)學(xué)模型是一個(gè)高階、非線性、強(qiáng)耦合的多變量系統(tǒng),故在研究異步電動(dòng)機(jī)的數(shù)學(xué)模型時(shí),常常做出如下假設(shè): 1) 忽略鐵耗對(duì)電機(jī)的影響; 2) 在頻率和溫度變化,忽略其對(duì)繞組電阻的影響; 3) 認(rèn)為各繞組的互感和自感都是線性的,即忽略磁路飽和的影響; 4) 設(shè)三相繞組對(duì)稱,在空間中互差1200電角度,產(chǎn)生的磁動(dòng)勢(shì)沿氣隙按正弦分布,忽略空間諧波[3]。 三相異步電動(dòng)機(jī)轉(zhuǎn)子繞組分為繞線型和籠型型,其均可以等效為三相繞線轉(zhuǎn)子,折算到定子側(cè)后,其定子和轉(zhuǎn)子繞組匝數(shù)都相等。電機(jī)繞組等效后的三相異步電動(dòng)機(jī)的物理模型如圖3-1所示。 圖3-1 三相異步電動(dòng)機(jī)的物理模型 3.2 坐標(biāo)變換 在異步電動(dòng)機(jī)的分析中可以看出,其數(shù)學(xué)模型由于存在一個(gè)復(fù)雜的66電感矩陣而比較復(fù)雜。通過(guò)坐標(biāo)變換的方法,使得變化后的數(shù)學(xué)模型得到簡(jiǎn)化。 1) 三相-兩相變換(3/2變換) 在三相靜止繞組A、B、C和兩相繞組、之間的變換,稱為三相靜止坐標(biāo)系和兩相靜止坐標(biāo)系間的變換。 三相異步電動(dòng)機(jī)的定子三相繞組和與之等效的兩相異步電動(dòng)機(jī)定子繞組、 ,各相磁勢(shì)矢量的空間位置如圖3-2所示。 圖3-2 三相靜止到兩相靜止變換 假設(shè)磁動(dòng)勢(shì)按正弦分布,那么當(dāng)三相磁動(dòng)勢(shì)與兩相磁動(dòng)勢(shì)相等時(shí),兩套繞組瞬時(shí)磁動(dòng)勢(shì)在α、β軸上的投影是相等的,則其反變換形式如下: (3-12) 這樣經(jīng)過(guò)三相-兩相的變換就可以將三相異步電動(dòng)機(jī)變換為兩相正交的異步電機(jī)模型。 2) 兩相-兩相旋轉(zhuǎn)變換(2s/2r變換) 從兩相靜止坐標(biāo)系到兩相旋轉(zhuǎn)坐標(biāo)系M, T的變換稱作兩相-兩相旋轉(zhuǎn)變換,簡(jiǎn)稱2s/2r變換,其中r表示旋轉(zhuǎn),s表示靜止。如圖3-3所示,旋轉(zhuǎn)坐標(biāo)系的兩個(gè)直流分量和靜止坐標(biāo)系的兩相交流分量產(chǎn)生相同大小的同步旋轉(zhuǎn)磁動(dòng)勢(shì)。 圖3-3 兩相靜止到兩相旋轉(zhuǎn)變換 由圖可知,其變換矩陣為: (3-13) 3.3 三相異步電動(dòng)機(jī)在兩相坐標(biāo)系上的數(shù)學(xué)模型 在前面的坐標(biāo)變換中不難看出其可以將異步電動(dòng)機(jī)的數(shù)學(xué)模型簡(jiǎn)化很多,因此在對(duì)異步電動(dòng)機(jī)分析常將其變換在兩相坐標(biāo)中分析。 1)異步電動(dòng)機(jī)在兩相同步旋轉(zhuǎn)坐標(biāo)系的模型 2) 異步電機(jī)在兩相靜止坐標(biāo)系的數(shù)學(xué)模型 在坐標(biāo)系中繞組都落在兩根相互垂直的軸上,兩組繞組間沒(méi)有耦合,矩陣中所有元素均為常系數(shù),消除了異步電動(dòng)機(jī)在三相靜止坐標(biāo)系上的數(shù)學(xué)模型中的一個(gè)非線性的根源。上述方程是矢量控制中的重要方程。 3.4 異步電機(jī)的矢量控制 20世紀(jì)70年代初,由美國(guó)學(xué)者和德國(guó)學(xué)者各自提出的矢量控制(vector control)理論,同時(shí)在實(shí)踐中經(jīng)過(guò)改進(jìn),形成了現(xiàn)在普遍采用的矢量控制方法。其不但解決了大型電動(dòng)汽車對(duì)高速領(lǐng)域中大轉(zhuǎn)矩的和大范圍內(nèi)恒定輸出功率的運(yùn)轉(zhuǎn)需求,還解決了以前的電動(dòng)機(jī)體積大的問(wèn)題。 其中,交流電機(jī)的轉(zhuǎn)子總磁通就變成了等效的直流電機(jī)的磁通,M繞組相當(dāng)于直流電機(jī)的勵(lì)磁繞組,相當(dāng)于勵(lì)磁電流,T繞組相當(dāng)于偽靜止繞組,相當(dāng)于與轉(zhuǎn)矩成正比的電樞電流。上述等效關(guān)系可如圖3-4所示。 圖3-4 異步電動(dòng)機(jī)的坐標(biāo)變換結(jié)構(gòu)圖 根據(jù)等效控制理論,可以構(gòu)成直接控制的矢量控制系統(tǒng),如圖3-5所示 圖3-5 矢量控制系統(tǒng)原理結(jié)構(gòu)圖 3.5 按轉(zhuǎn)子磁鏈定向的矢量控制方程及其解耦作用 在上面的動(dòng)態(tài)模型分析中,假如兩相同步旋轉(zhuǎn)坐標(biāo)系按轉(zhuǎn)子磁鏈定向時(shí),則有: , (3-20) 將其帶入轉(zhuǎn)矩方程和狀態(tài)方程,可以得到: (3-21) (3-22) (3-23) 式中為轉(zhuǎn)子時(shí)間常數(shù),我們不難從式中發(fā)現(xiàn),轉(zhuǎn)子磁鏈僅有定子電流勵(lì)磁分量產(chǎn)生,與轉(zhuǎn)矩分量無(wú)關(guān),因此,定子電流的勵(lì)磁分量與轉(zhuǎn)矩分量是解耦的。上述方程可以將異步電機(jī)的數(shù)學(xué)模型繪成圖3-6的結(jié)構(gòu)形式,如下: 圖3-6 異步電動(dòng)機(jī)矢量變換與電流解耦數(shù)學(xué)模型 從以上分析可知,要使磁場(chǎng)定向控制具有和直流調(diào)速系統(tǒng)一樣的動(dòng)態(tài)性能,在調(diào)速過(guò)程中保持轉(zhuǎn)子磁鏈恒定是非常重要的。 根據(jù)控制方案中是否進(jìn)行轉(zhuǎn)子磁鏈的反饋控制及其觀測(cè),磁場(chǎng)定向控制可分為直接磁場(chǎng)定向控制和間接磁場(chǎng)定向控制(又稱轉(zhuǎn)差頻率控制)。 圖3-7是一個(gè)典型的轉(zhuǎn)速、磁鏈閉環(huán)矢量控制系統(tǒng),包括速度控制環(huán)和磁鏈控制環(huán)。 圖3-7 直接型矢量控制方框圖 間接磁場(chǎng)定向控制采用磁鏈開(kāi)環(huán)控制,在磁通運(yùn)行過(guò)程中不檢測(cè)轉(zhuǎn)子磁鏈信號(hào),系統(tǒng)結(jié)構(gòu)簡(jiǎn)單。利用轉(zhuǎn)差公式,形成轉(zhuǎn)差矢量控制系統(tǒng),利用得到同步角速度,該方案在實(shí)際中也獲得廣泛的應(yīng)用,控制方案如圖3-8所示: 圖3-8 間接矢量控制方框圖 但該方法更依賴于電機(jī)參數(shù)的準(zhǔn)確檢測(cè),當(dāng)參數(shù)時(shí)變或不確定時(shí),系統(tǒng)動(dòng)態(tài)性能大受影響。且磁鏈開(kāi)環(huán)在動(dòng)態(tài)過(guò)程中存在偏差,其性能不及磁鏈閉環(huán)控制系統(tǒng)。 3.6 無(wú)速度傳感器矢量控制系統(tǒng) 無(wú)論是直接矢量控制還是間接矢量控制,都具有動(dòng)態(tài)性能好、調(diào)速范圍寬的優(yōu)點(diǎn),但動(dòng)態(tài)性能受電機(jī)參數(shù)變化的影響是其主要的不足之處。 本章小結(jié):作為電動(dòng)汽車的驅(qū)動(dòng)系統(tǒng),應(yīng)滿足小型輕量化等要求,而異步電動(dòng)機(jī)正具有這些優(yōu)點(diǎn),在近年來(lái),矢量控制日益成熟,在電動(dòng)汽車中得到了廣泛的應(yīng)用。因此本章根據(jù)異步電動(dòng)機(jī)在三相坐標(biāo)系下的數(shù)學(xué)模型和坐標(biāo)變化理論,分析介紹了異步電動(dòng)機(jī)的矢量控制原理。 第4章 基于MATLAB的電動(dòng)汽車矢量控制系統(tǒng)仿真 MATLAB是矩陣實(shí)驗(yàn)室(Matrix Laboratory)的簡(jiǎn)稱,是美國(guó)MathWorks公司出品的商業(yè)數(shù)學(xué)軟件,用于算法開(kāi)發(fā),數(shù)據(jù)可視化,數(shù)據(jù)分析以及數(shù)值計(jì)算的高級(jí)技術(shù)計(jì)算語(yǔ)言和交互式環(huán)境,主要包括MATLAB和Simulink兩大部分。 4.1 基于電流模型磁鏈估計(jì)的控制系統(tǒng)仿真 根據(jù)磁鏈估計(jì)方法和模型參考自適應(yīng)的轉(zhuǎn)速估計(jì)方法,利用MATLAB/Simulink環(huán)境建立了基于電流模型磁鏈估計(jì)的無(wú)速度傳感器矢量控制系統(tǒng),仿真電路圖如下所示: 圖4-1 基于電流模型磁鏈估計(jì)無(wú)速度傳感器矢量控制系統(tǒng) 圖4-1所示的系統(tǒng)框圖中主要包含有電壓磁鏈估計(jì)子系統(tǒng)、電流磁鏈估計(jì)子系統(tǒng)、轉(zhuǎn)速估計(jì)子系統(tǒng)以及電流滯環(huán)控制子系統(tǒng)等,具體介紹如下。 (1)電流模型 圖4-2 磁鏈電流模型 圖4-2所示電流模型利用3s/2r變換將三相定子電流轉(zhuǎn)化為兩相同步旋轉(zhuǎn)坐標(biāo)系下的電流和,然后通過(guò)公式得到轉(zhuǎn)子磁鏈。 (2)電壓模型 圖4-3 磁鏈電壓模型 (3)基于MARS的轉(zhuǎn)速推算模塊 圖4-4的轉(zhuǎn)速估計(jì)子系統(tǒng)分別利用基于電流模型估計(jì)的磁鏈和基于電壓模型估計(jì)的磁鏈求出偏差,再利用PI積分估計(jì)出轉(zhuǎn)子速度。這里所得的通過(guò)反饋到電壓模型和電流模型用于計(jì)算單位矢量,從而形成一個(gè)完整的回路。 圖4-4 轉(zhuǎn)速估計(jì)子系統(tǒng) (4) 電流滯環(huán)控制模塊 將給定電流與電機(jī)定子電流進(jìn)行比較,將得到的偏差作為滯環(huán)比較器的輸入,通過(guò)其輸出來(lái)控制功率器件的通斷。 4.2 基于電壓模型的無(wú)速度傳感器矢量控制系統(tǒng) 此系統(tǒng)所包含的子系統(tǒng)與基于電流模型的無(wú)速度傳感器矢量控制系統(tǒng)相同。由于系統(tǒng)中用于轉(zhuǎn)速估計(jì)的電壓模型和電流模型被獨(dú)立出來(lái)。其仿真電路圖如下所示: 圖4-5 基于電壓模型磁鏈估計(jì)無(wú)速度傳感器矢量控制系統(tǒng) 4.3 仿真結(jié)果分析 建立了上述的仿真系統(tǒng)電路結(jié)構(gòu)后,接下來(lái)就對(duì)對(duì)稱三相正弦電壓為380V、頻率為50Hz的異步電動(dòng)機(jī)進(jìn)行仿真,并對(duì)調(diào)節(jié)器參數(shù)等系統(tǒng)仿真參數(shù)進(jìn)行設(shè)定,對(duì)仿真結(jié)果進(jìn)行分析,以確定該控制系統(tǒng)的性能。 (1) 基于電流模型磁鏈估計(jì)的仿真 圖4-6 定參數(shù)時(shí)實(shí)際轉(zhuǎn)速和估計(jì)轉(zhuǎn)速 圖4-7 變參數(shù)時(shí)實(shí)際轉(zhuǎn)速和估計(jì)轉(zhuǎn)速 圖4-8 定參數(shù)時(shí)實(shí)際轉(zhuǎn)矩和估計(jì)轉(zhuǎn)矩 圖4-9 變參數(shù)時(shí)實(shí)際轉(zhuǎn)矩和估計(jì)轉(zhuǎn)矩 圖4-10 定參數(shù)時(shí)的三相定子電流 圖4-11 定參數(shù)時(shí)定子磁鏈 從以上仿真結(jié)果可知,在定參數(shù)時(shí)基于電流模型磁鏈估計(jì)的無(wú)速度傳感器矢量控制系統(tǒng)能很好的完成加載、變速等基本控制功能。和矢量控制理論相一致,能夠達(dá)到電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的要求。 (2) 基于電壓模型磁鏈估計(jì)的仿真 初始給定轉(zhuǎn)速為600r/min,負(fù)載為0;0.3秒時(shí)給定轉(zhuǎn)速突加到1200r/min,0.6秒時(shí)突加50Nm的負(fù)載。仿真結(jié)果如下: 圖4-12 實(shí)際轉(zhuǎn)速 圖4-13 估計(jì)轉(zhuǎn)速 圖4-14 實(shí)際轉(zhuǎn)矩 圖4-15 估計(jì)轉(zhuǎn)矩 圖4-16 三相定子電流 圖4-17 定子磁鏈軌跡 由圖示仿真結(jié)果可以看出,基于電壓模型磁鏈估計(jì)的矢量控制系統(tǒng)也能較好的完成加載、變速等基本控制功能。因此,電壓型在電動(dòng)汽車低速控制中有很大的局限性。 本章小結(jié):本章通過(guò)對(duì)異步電動(dòng)機(jī)基于電壓模型磁鏈估計(jì)的矢量控制系統(tǒng)進(jìn)行仿真,并對(duì)結(jié)果在電動(dòng)汽車?yán)硐胄旭傔^(guò)程中進(jìn)行分析,由仿真結(jié)果圖可以看出,采用異步電動(dòng)機(jī)矢量控制系統(tǒng)的電動(dòng)汽車滿足基本的實(shí)際需求,具有動(dòng)態(tài)性能好、調(diào)速范圍寬的優(yōu)點(diǎn),但同時(shí)存在不足之處,易受電機(jī)參數(shù)影響,但其仍具有很好的發(fā)展空間。 第5章 結(jié)束語(yǔ) 異步電機(jī)由于具有結(jié)構(gòu)接單、運(yùn)行可靠、維護(hù)方便等特點(diǎn)在現(xiàn)代電動(dòng)汽車中廣泛被運(yùn)用,隨著電動(dòng)汽車的不斷發(fā)展和電力電子器件、微處理器等的更新,交流電機(jī)矢量控制技術(shù)也會(huì)越來(lái)越成熟。本文主要做了以下工作: 簡(jiǎn)要介紹了電動(dòng)汽車的背景和發(fā)展現(xiàn)狀; 1.分析對(duì)比了幾種常用電動(dòng)汽車驅(qū)動(dòng)系統(tǒng),說(shuō)明選擇異步電機(jī)的原因; 2.通過(guò)對(duì)異步電機(jī)矢量控制的原理分析,選擇了適合電動(dòng)汽車性能要求 的異步電機(jī)矢量控制系統(tǒng)進(jìn)行設(shè)計(jì); 3.最后利用MATLAB對(duì)電動(dòng)汽車無(wú)速度傳感器矢量控制系統(tǒng)進(jìn)行仿真, 驗(yàn)證了異步電機(jī)矢量控制的可行性。 由于自己的知識(shí)水平和時(shí)間有限,對(duì)該課題并未深入的學(xué)習(xí)研究,因此在文中難免存在不妥的地方,希望各位老師給予校正。 電動(dòng)汽車是各個(gè)領(lǐng)域結(jié)合的綜合產(chǎn)物,隨著其不斷的發(fā)展,驅(qū)動(dòng)控制系統(tǒng)也將愈來(lái)愈方便、效率,因此,自己認(rèn)為后期可以做以下工作: (1)在矢量控制中,克服電機(jī)參數(shù)常對(duì)系統(tǒng)造成影響; (2)由于基于電壓模型和電流模型的轉(zhuǎn)子磁鏈觀測(cè)都有一定的使用范圍,可以研究一種適應(yīng)能力強(qiáng),使用范圍廣的磁鏈觀測(cè)方法。將最大效率控制與快速響應(yīng)控制有機(jī)結(jié)合,克服變頻調(diào)速系統(tǒng)的效率優(yōu)化對(duì)動(dòng)態(tài)響應(yīng)性能的影響,改進(jìn)系統(tǒng)運(yùn)行的穩(wěn)定性和魯棒性; (3)利用近年來(lái)為電動(dòng)汽車異步電機(jī)矢量控制而出現(xiàn)的專用DSP,設(shè)計(jì)系統(tǒng)的硬件和軟件部分,達(dá)到提高控制系統(tǒng)動(dòng)態(tài)性能的目的。 致 謝 首先向我的畢業(yè)設(shè)計(jì)指導(dǎo)老師表達(dá)最真摯的謝意,老師在電氣傳動(dòng)和電動(dòng)汽車等領(lǐng)域擁有豐富的學(xué)識(shí),同時(shí)還在不斷學(xué)習(xí)各種電動(dòng)汽車新技術(shù)知識(shí),充實(shí)著自己。在畢業(yè)設(shè)計(jì)中,老師培養(yǎng)了我們分析問(wèn)題,解決問(wèn)題的能力,同時(shí)在論文設(shè)計(jì)和撰寫(xiě)中給予了我們極大的幫助。其次,感謝在畢業(yè)設(shè)計(jì)中給予我?guī)椭呐笥?,同學(xué),謝謝你們?cè)谏睿瑢W(xué)習(xí)中給我的幫助。最后,感謝天下無(wú)數(shù)的父母,正式他們的無(wú)私付出,才使得我們完成學(xué)業(yè)。 真誠(chéng)的感謝大學(xué)生活里所有的老師,同學(xué),朋友和自己的父母! 參考文獻(xiàn) [1]翟麗. 電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)牽引電機(jī)及其控制技術(shù)[J]. 汽車電器,2003,(3):9-12 [2]鄒國(guó)棠 程明.電動(dòng)汽車的新型驅(qū)動(dòng)技術(shù)[M].機(jī)械工業(yè)出版社,2010年5月 [3] 陳伯時(shí).電力拖動(dòng)系統(tǒng)—運(yùn)動(dòng)控制系統(tǒng)第三版[M].機(jī)械工業(yè)出版社,2010年1月 [4]日本電氣學(xué)會(huì) 電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)調(diào)查專門委員會(huì).電動(dòng)汽車最新技術(shù)[M].機(jī)械工業(yè)出版社,2009年8月 [5]王步來(lái).電動(dòng)汽車異步電機(jī)系統(tǒng)的開(kāi)發(fā)策略[J].微電機(jī),2003,(3):36-38 [6]王文森,李永東,王光輝等.基于PI自適應(yīng)法的無(wú)速度傳感器異步電動(dòng)機(jī)矢量控制系統(tǒng)[J]電工技術(shù)學(xué)報(bào),2002,(2): 1-6 [7]史國(guó)生.交直流調(diào)速系統(tǒng)[M].北京:北京工業(yè)出版社,2002年1月 [8]韓安太 劉峙飛 黃海.DSP控制原理及其在運(yùn)動(dòng)控制系統(tǒng)中的應(yīng)用.北京:清華大學(xué)出版社,2003年10月 [9]高景德 王祥珩 李發(fā)海.交流電機(jī)及其系統(tǒng)的分析[M].北京:清華大學(xué)出版社,1993年8月 [10]陳清泉.現(xiàn)代電動(dòng)汽車技術(shù)[M].北京:北京理工大學(xué)出版社,2002年 [11]徐國(guó)凱 趙秀春 蘇航.電動(dòng)汽車的驅(qū)動(dòng)與控制[M].北京:電子工業(yè)出版社,2010年6月 [12]吳加加.燃料電池汽車異步電機(jī)控制方法的研究[C].北京 [13] J.Wang,Z.Y.Liu,H.Chen,R.Pei.Output feedback Control to Constrained Systems via Moving Horizon Stategy[J]自動(dòng)化學(xué)報(bào).2007,33(11):1176-1181 [14]C.W.Scherer,P.Gahinet,and M. Chilali.Multi-objective output-feedback control via LMI optimization[J].IEEE Trans.Automat.Contr.42:896-911,1997 [15]S.Boyd,L.EI Ghaoui,E.Feron,and V.Balakishnan.Linear Mstrix Inequalities in Systems and Control Theory[M].SIAM,Philadelphia,1994 [16]徐中領(lǐng),李橋梁.交流感應(yīng)電機(jī)無(wú)速度傳感器矢量控制系統(tǒng)設(shè)計(jì)[J]安徽電氣工程職業(yè)拄術(shù)學(xué)院學(xué)報(bào)。2006(3):29-32 [17]萬(wàn)沛霖.電動(dòng)汽車的關(guān)鍵技術(shù)[M].北京理工大學(xué)出版社,北京:1998 .- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 電動(dòng)汽車 驅(qū)動(dòng) 控制系統(tǒng) 設(shè)計(jì)
鏈接地址:http://www.3dchina-expo.com/p-12934650.html