欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt

上傳人:tian****1990 文檔編號(hào):13663937 上傳時(shí)間:2020-06-23 格式:PPT 頁(yè)數(shù):54 大?。?.75MB
收藏 版權(quán)申訴 舉報(bào) 下載
山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第1頁(yè)
第1頁(yè) / 共54頁(yè)
山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第2頁(yè)
第2頁(yè) / 共54頁(yè)
山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt_第3頁(yè)
第3頁(yè) / 共54頁(yè)

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《山東省2019中考數(shù)學(xué) 第五章 四邊形 第二節(jié) 矩形、菱形、正方形課件.ppt(54頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、考點(diǎn)一 矩形的性質(zhì)與判定 (5年5考) 例1 如圖,四邊形ABCD為平行四邊形,延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB,添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( ) A.AB=BE B.BE⊥DC C.∠ADB=90 D.CE⊥DE,【分析】 先證明四邊形BCDE為平行四邊形,再根據(jù)矩形的判定進(jìn)行分析.,【自主解答】 ∵四邊形ABCD為平行四邊形,∴AD∥BC, AD=BC. 又∵AD=DE, ∴DE∥BC,且DE=BC, ∴四邊形BCED為平行四邊形. ∵AB=BE,DE=AD,∴BD⊥AE, ∴?DBCE為矩形,故A選項(xiàng)不符合題意;,∵對(duì)角線(xiàn)互相垂直的平行四邊形為菱形,

2、不一定為矩形, 故B選項(xiàng)符合題意; ∵∠ADB=90,∴∠EDB=90, ∴?DBCE為矩形,故C選項(xiàng)不符合題意; ∵CE⊥DE,∴∠CED=90, ∴?DBCE為矩形,故D選項(xiàng)不符合題意.故選B.,矩形的性質(zhì)應(yīng)用及判定方法 (1)矩形性質(zhì)的應(yīng)用:從邊上看,兩組對(duì)邊分別平行且相等;從角上看,矩形的四個(gè)角都是直角;從對(duì)角線(xiàn)上看,對(duì)角線(xiàn)互相平分且相等,同時(shí)把矩形分為四個(gè)面積相等的等腰三角形.,(2)矩形的判定方法:若四邊形可以證為平行四邊形,則 還需證明一個(gè)角是直角或?qū)蔷€(xiàn)相等;若直角較多,可利 用“三個(gè)角為直角的四邊形是矩形”來(lái)證.,1.(2018棗莊中考)如圖,在矩形ABCD中,點(diǎn)E是邊BC的

3、 中點(diǎn),AE⊥BD,垂足為F,則tan∠BDE的值為( ),A,2.(2018濱州中考)如圖,在矩形ABCD中,AB=2,BC= 4,點(diǎn)E,F(xiàn)分別在BC,CD上,若AE= ,∠EAF=45,則 AF的長(zhǎng)為 .,3.如圖,在?ABCD中,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD 上,DF=BE,連接AF,BF. (1)求證:四邊形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.,(1)∵四邊形ABCD是平行四邊形, ∴DC∥AB,即DF∥BE. 又∵DF=BE,∴四邊形BFDE為平行四邊形. 又∵DE⊥AB,∴∠DEB=90, ∴四邊形BFDE為矩形.,(2)

4、∵四邊形BFDE為矩形,∴∠BFC=90. ∵CF=3,BF=4,∴BC= =5. ∵四邊形ABCD是平行四邊形,∴AD=BC=5, ∴AD=DF=5,∴∠DAF=∠DFA. 又∵DC∥AB,∴∠DFA=∠FAB, ∴∠DAF=∠FAB,即AF平分∠DAB.,考點(diǎn)二 菱形的性質(zhì)與判定 (5年3考) 例2 (2017濱州中考)如圖,在?ABCD中,以點(diǎn)A為圓心,AB 長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F;再分別以點(diǎn)B,F(xiàn)為圓心,大于 BF的相同長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交 BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.,(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證:四邊形ABEF是菱形; (

5、2)若菱形ABEF的周長(zhǎng)為16,AE=4 ,求∠C的大小.,【分析】 (1)利用“鄰邊相等的平行四邊形是菱形”進(jìn)行判定; (2)連接BF,利用菱形的性質(zhì),通過(guò)解直角三角形確定∠OAF的度數(shù),從而可知∠C的度數(shù).,【自主解答】(1)由作圖過(guò)程可知,AB=AF,AE平分∠BAD, ∴∠BAE=∠EAF. ∵四邊形ABCD為平行四邊形,∴BC∥AD, ∴∠AEB=∠EAF,∴∠BAE=∠AEB, ∴AB=BE,∴BE=AF, ∴四邊形ABEF為平行四邊形,∴四邊形ABEF為菱形.,(2)如圖,連接BF. ∵四邊形ABEF為菱形, ∴BF與AE互相垂直平分,∠BAE=∠FAE,,∵菱形ABEF的周長(zhǎng)

6、為16,∴AF=4, ∴∠OAF=30,∴∠BAF=60. ∵四邊形ABCD為平行四邊形,∴∠C=∠BAD=60.,菱形的性質(zhì)應(yīng)用及判定方法 (1)判定一個(gè)四邊形是菱形時(shí),一是證明四條邊相等;二是先證明它是平行四邊形,進(jìn)而再證明它是菱形. (2)運(yùn)用菱形的性質(zhì)時(shí),要注意菱形的對(duì)角線(xiàn)互相垂直這個(gè)條件;此外,菱形的對(duì)角線(xiàn)所在的直線(xiàn)是菱形的對(duì)稱(chēng)軸,運(yùn)用這一性質(zhì)可以求出線(xiàn)段和的最小值.,4.(2015濱州中考)順次連接矩形ABCD各邊的中點(diǎn), 所得四邊形必定是( ) A.鄰邊不等的平行四邊形 B.矩形 C.正方形 D.菱形,D,5.(2018日照中考)如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC, BD

7、相交于點(diǎn)O,AO=CO,BO=DO.添加下列條件,不能判定 四邊形ABCD是菱形的是( ) A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO,B,6.如圖,在△ABC中,AD是BC邊上的中線(xiàn),E是AD的中點(diǎn), 過(guò)點(diǎn)A作BC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF. (1)求證:AF=DC; (2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.,(1)證明:∵AF∥BC,∴∠AFE=∠DBE. ∵E是AD的中點(diǎn),AD是BC邊上的中線(xiàn), ∴AE=DE,BD=CD. 在△AFE和△DBE中, ∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.,(2)解

8、:四邊形ADCF是菱形. 證明如下:∵AF∥BC,AF=DC, ∴四邊形ADCF是平行四邊形. ∵AC⊥AB,AD是斜邊BC的中線(xiàn),∴AD= BC=DC, ∴平行四邊形ADCF是菱形.,考點(diǎn)三 正方形的性質(zhì)與判定 (5年3考) 例3 (2014濱州中考)如圖,已知正方形ABCD,把邊DC繞D點(diǎn)順時(shí)針旋轉(zhuǎn)30到DC′處,連接AC′,BC′,CC′,寫(xiě)出圖中所有的等腰三角形,并寫(xiě)出推理過(guò)程.,【分析】 利用旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)以及全等三角形的性質(zhì)與判定得出相等的邊,從而得出圖中的等腰三角形. 【自主解答】圖中的等腰三角形有△DCC′,△DC′A,△C′AB,△C′BC. 推理過(guò)程:∵四邊形A

9、BCD是正方形, ∴AB=AD=DC,∠BAD=∠ADC=90, ∴DC=DC′=DA,,∴△DCC′,△DC′A為等腰三角形. ∵∠C′DC=30,∠ADC=90,∴∠ADC′=60, ∴△AC′D為等邊三角形, ∴AC′=AD=AB,∴△C′AB為等腰三角形. ∵∠C′AB=90-60=30,∴∠CDC′=∠C′AB,,在△DCC′和△ABC′中, ∴△DCC′≌△ABC′,∴CC′=C′B, ∴△C′BC為等腰三角形.,判定正方形的方法及其特殊性 (1)判定一個(gè)四邊形是正方形,可以先判定四邊形為矩形,再證鄰邊相等或者對(duì)角線(xiàn)互相垂直;或先判定四邊形為菱形,再證有一個(gè)角是直角或者對(duì)角線(xiàn)相等

10、. (2)正方形既是特殊的矩形,又是特殊的菱形,具有它們的所有性質(zhì).,7.(2018青島中考)已知正方形ABCD的邊長(zhǎng)為5,點(diǎn)E,F(xiàn)分 別在AD,DC上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的 中點(diǎn),連接GH,則GH的長(zhǎng)為 .,8.已知:如圖,在正方形ABCD中,AB=4,點(diǎn)G是射線(xiàn)AB上的一個(gè)動(dòng)點(diǎn),以DG為邊向右作正方形DGEF,作EH⊥AB于點(diǎn)H.,(1)若點(diǎn)G在點(diǎn)B的右邊.試探索:EH-BG的值是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由. (2)連接EB,在G點(diǎn)的整個(gè)運(yùn)動(dòng)(點(diǎn)G與點(diǎn)A重合除外)過(guò)程中,求∠EBH的度數(shù).,解:(1)EH-BG的值是定值. ∵EH⊥AB,

11、∴∠GHE=90,∴∠GEH+∠EGH=90. 又∵∠AGD+∠EGH=90,∴∠GEH=∠AGD. ∵四邊形ABCD與四邊形DGEF都是正方形, ∴∠DAG=90,DG=GE,∴∠DAG=∠GHE.,在△DAG和△GHE中, ∴△DAG≌△GHE(AAS),∴AG=EH. 又∵AG=AB+BG,AB=4,∴EH=AB+BG, ∴EH-BG=AB=4.,(2)①如圖1,當(dāng)點(diǎn)G在點(diǎn)B的左側(cè)時(shí), 同(1)可證得△DAG≌△GHE, ∴GH=DA=AB,EH=AG,∴BH=AG=EH. 又∵∠GHE=90,∴△BHE是等腰直角三角形, ∴∠EBH=45.,②如圖2,當(dāng)點(diǎn)G在點(diǎn)B的右側(cè)時(shí), 由△DA

12、G≌△GHE, ∴GH=DA=AB,EH=AG,∴AG=BH. 又∵EH=AG,∴EH=HB. 又∵∠GHE=90,∴△BHE是等腰直角三角形, ∴∠EBH=45.,③如圖3,當(dāng)點(diǎn)G與點(diǎn)B重合時(shí), 同理△DAG≌△GHE,∴GH=DA=AB,EH=AG=AB, ∴△GHE(即△BHE)是等腰直角三角形, ∴∠EBH=45. 綜上所述,在G點(diǎn)的整個(gè)運(yùn)動(dòng)(點(diǎn)G與點(diǎn)A重合除外)過(guò)程中,∠EBH都等于45.,考點(diǎn)四 四邊形綜合題 百變例題(2018棗莊中考改編)如圖,將矩形ABCD沿AF折 疊,使點(diǎn)D落在BC邊上的點(diǎn)E處,過(guò)點(diǎn)E作EG∥CD交AF于點(diǎn)G, 連接DG.,(1)求證:四邊形EFDG是菱形;

13、 (2)探究線(xiàn)段EG,GF,AF之間的數(shù)量關(guān)系,并說(shuō)明理由; (3)若 求BE的長(zhǎng).,【分析】 (1)先依據(jù)翻折的性質(zhì)和平行線(xiàn)的性質(zhì)證明∠DGF =∠DFG,從而得到GD=DF,再根據(jù)翻折的性質(zhì)即可證明DG =GE=DF=EF; (2)連接DE,交AF于點(diǎn)O.由菱形的性質(zhì)可知GF⊥DE,OG=OF = GF,然后證明△DOF∽△ADF,由相似三角形的性質(zhì)可 證明DF2=FOAF,于是可得到EG,AF,GF的數(shù)量關(guān)系;,(3)過(guò)點(diǎn)G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG,然后在△ADF中依據(jù)勾股定理可求得AD的長(zhǎng),然后再證明△FGH∽△FAD,利用相似三角

14、形的性質(zhì)可求得GH的長(zhǎng),最后依據(jù)BE=AD-GH求解即可.,【自主解答】 (1)∵GE∥DF,∴∠EGF=∠DFG. ∵由翻折的性質(zhì)可知GD=GE,DF=EF,∠DGF=∠EGF, ∴∠DGF=∠DFG,∴GD=DF, ∴DG=GE=DF=EF, ∴四邊形EFDG是菱形. ∵四邊形EFDG是菱形,,變式1:如圖,若點(diǎn)G在BE上,AD=10,AB=6,CE=2, 將△ABG沿AG折疊,點(diǎn)B恰好落在線(xiàn)段AE上的點(diǎn)H處.求證: (1)∠FAG=45; (2)S△ABG= S△EGH; (3)BG+CE=GE.,證明:如圖, 由題意可知,BG=GH,AE=AD=10,AH=AB=6, ∠1=∠2,∠3

15、=∠4. (1)∵∠1+∠2+∠3+∠4=∠BAD=90, ∴∠2+∠3= ∠BAD= 90=45, 即∠FAG=45.,(2)∵AE=10,AH=6,∴HE=AE-AH=10-6=4. 設(shè)BG=x,∴GH=BG=x, ∴GE=AD-BG-EC=10-x-2=8-x. 在Rt△GHE中, ∵GE2=GH2+HE2,∴(8-x)2=x2+42,∴x=3, 即GH=BG=3,,(3)∵GE=8-x=8-3=5,BG+EC=3+2=5, ∴BG+CE=GE.,變式2:如圖,矩形ABCD中,AD=10,AB=6,若點(diǎn)M是BC邊上一點(diǎn),連接AM,把∠B沿AM折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CMB′為直角三

16、角形時(shí),求BM的長(zhǎng).,解: 如圖,當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),連接AC. 在Rt△ABC中,AB=6,BC=10, ∵∠B沿AM折疊,使點(diǎn)B落在點(diǎn)B′處, ∴∠AB′M=∠B=90.,當(dāng)△CMB′為直角三角形時(shí),只能得到∠MB′C=90, ∴點(diǎn)A,B′,C共線(xiàn),即∠B沿AM折疊,使點(diǎn)B落在對(duì)角線(xiàn) AC上的點(diǎn)B′處, ∴MB=MB′,AB=AB′=6,∴CB′=2 -6. 設(shè)BM=x,則MB′=x,CM=10-x,,在Rt△CMB′中, ∵M(jìn)C2=MB′2+CB′2, (10-x)2=x2+(2 -6)2,,如圖,當(dāng)點(diǎn)B′落在AD邊上時(shí), 此時(shí)四邊形ABMB′為正方形,∴BM=AB=6. 綜上所述,BM的長(zhǎng)為 或6.,

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!