《山東省臨沂市青云鎮(zhèn)中心中學(xué)八年級(jí)數(shù)學(xué)下冊(cè) 梯形的判定學(xué)案(無(wú)答案) 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《山東省臨沂市青云鎮(zhèn)中心中學(xué)八年級(jí)數(shù)學(xué)下冊(cè) 梯形的判定學(xué)案(無(wú)答案) 新人教版(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、山東省臨沂市青云鎮(zhèn)中心中學(xué)八年級(jí)數(shù)學(xué)下冊(cè) 梯形的判定學(xué)案 新人教版
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):掌握等腰梯形的判定方法并能運(yùn)用.2.難點(diǎn):等腰梯形判定方法的運(yùn)用.
三、課堂引入
1.復(fù)習(xí)提問(wèn):(1)什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
(2)等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
(3)在研究解決梯形問(wèn)題時(shí)的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來(lái)判定一個(gè)梯形是否是等腰梯形呢?今天我們就共同來(lái)研究這個(gè)問(wèn)題.
2.【提出問(wèn)題】:前面所學(xué)的特殊四邊形的判定基本上是性質(zhì)的逆命題.等腰梯形同一底上兩個(gè)角相等的逆命
2、題是什么?
命題:同一底上的兩個(gè)角相等的梯形是等腰梯形
問(wèn):這個(gè)命題是否成立?能否加以證明,并寫出已知、求證.
啟發(fā):能否轉(zhuǎn)化為特殊四邊形或三角形.
已知:如圖,在梯形ABCD中,AD∥BC,∠B=∠C.
求證:AB=CD.
通過(guò)證明:驗(yàn)證了命題的正確性,從而得到:等腰梯形判定方法
等腰梯形判定方法 在同一底上的兩個(gè)角相等的梯形是等腰梯形.
幾何表達(dá)式:梯形ABCD中,若∠B=∠C,則AB=DC.
【注意】等腰梯形的判定方法:①先判定它是梯形,②再用“兩腰相等”“或同一底上的兩個(gè)角相等”來(lái)判定它是等腰梯形.
四、例、習(xí)題分析
例1(補(bǔ)充) 證明:對(duì)角線相
3、等的梯形是等腰梯形.
已知:如圖,梯形ABCD中,對(duì)角線AC=BD.
求證:梯形ABCD是等腰梯形.
例3(補(bǔ)充) 已知:如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,CF⊥BE交BD于G,F(xiàn)是垂足.求證:四邊形ABGE是等腰梯形.
分析:先證明OE=OG,從而說(shuō)明∠OEG=45°,得出EG∥AB,由AE,BG延長(zhǎng)交于O,顯然EG≠AB.得出四邊形ABGE是梯形,再利用同底上的兩角相等得出它為等腰梯形.
例4 閱讀本例題(補(bǔ)充)畫一等腰梯形,使它上、下底長(zhǎng)分別4cm、12cm,高為3cm,并計(jì)算這個(gè)等腰梯形的周長(zhǎng)和面積.
分析:梯形的畫圖題常常通過(guò)分析,
4、找出需添加的輔助線,歸結(jié)為三角形或平行四邊形的作圖,然后,再根據(jù)它們之間的聯(lián)系,畫出所要求的梯形.
如圖,先算出AB長(zhǎng),可畫等腰三角形ABE,然后完成 AECD的畫圖.
畫法:①畫ΔABE,使BE=12—4=8cm.
.
②延長(zhǎng)BE到C使EC=4cm.
③分別過(guò)A、C作AD∥BC ,CD∥AE,AD、CD交于點(diǎn)D.
四邊形ABCD就是所求的等腰梯形.
解:梯形ABCD周長(zhǎng)=4+12+5×2=26cm .
答:梯形周長(zhǎng)為26cm,面積為24.
五、隨堂練習(xí)
1.下列說(shuō)法中正確的是( ).
(A)等腰梯形兩底角相等
(B)等腰梯形的一組對(duì)邊
5、相等且平行
(C)等腰梯形同一底上的兩個(gè)角都等于90度
(D)等腰梯形的四個(gè)內(nèi)角中不可能有直角
2.已知等腰梯形的周長(zhǎng)25cm,上、下底分別為7cm、8cm,則腰長(zhǎng)為_(kāi)______cm.
3.已知等腰梯形中的腰和上底相等,且一條對(duì)角線和一腰垂直,求這個(gè)梯形的各個(gè)角的度數(shù).
4.已知,如圖,在四邊形ABCD中,AB>DC,∠1=∠2,AC=BD,求證:四邊形ABCD是等腰梯形.
5.已知,如圖,E、F分別是梯形ABCD的兩底AD、BC的中點(diǎn),且EF⊥BC,求證:梯形ABCD是等腰梯形.
六、課后練習(xí)
1.等腰梯形一底角,上、下底分別為8,18,則它的腰長(zhǎng)為_(kāi)_____,高為_(kāi)_____,面積是_________.
2.梯形兩條對(duì)角線分別為15,20,高為12,則此梯形面積為_(kāi)________.
3.已知:如圖,在四邊形ABCD中,∠B=∠C,AB與CD不平行,且AB=CD.求證:四邊形ABCD是等腰梯形.
4.如圖4.9-9,梯形ABCD中,AB∥CD,AD=BC,CE⊥AB于E,若AC⊥BD于G.求證:CE=(AB+CD).