喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問咨詢QQ:1064457796,,,課題后的【XX系列】為整理分類用,與內(nèi)容無關(guān),請忽視
汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)控制單元的開發(fā)
曾群 南昌大學(xué)信息工程學(xué)院,南昌,中國,電子郵箱:zengqun@ncu.edu.cn
黃巨華 南昌大學(xué)機(jī)電工程學(xué)院,南昌,中國,電子郵箱:huangjuhua@163.com
摘要:電動(dòng)助力轉(zhuǎn)向系統(tǒng)使用電動(dòng)馬達(dá),提供必要的控制驅(qū)動(dòng)程序。EPS系統(tǒng)采用變量協(xié)助,當(dāng)車輛速度減小時(shí),它提供多的助力,相反的,當(dāng)車輛速度增大時(shí),它提供少的助力。此功能今幾年才可用,需要?jiǎng)恿涂刂崎g微妙的平衡。EPS系統(tǒng)已被用來取代傳統(tǒng)的液壓助力轉(zhuǎn)向系統(tǒng)(HPS),EPS系統(tǒng)廣泛用于高端和低端汽車,它注定很快成為主流來制造汽車。在本文中,控制單元與直流電動(dòng)機(jī)協(xié)助EPS系統(tǒng)。再加上相應(yīng)的軟件開發(fā),硬件電路,可以有效地滿足電動(dòng)助力轉(zhuǎn)向系統(tǒng)的需求。
關(guān)鍵詞:電動(dòng)助力轉(zhuǎn)向系統(tǒng);控制單元:邏輯電路;驅(qū)動(dòng)電路;汽車
Ⅰ.簡介
大多數(shù)現(xiàn)代汽車都裝有電動(dòng)助力轉(zhuǎn)向系統(tǒng)來增加汽車的操控性能并降低方向盤上的輸入扭矩,因?yàn)楫?dāng)汽車前軸負(fù)荷越大,需要手動(dòng)轉(zhuǎn)向盤轉(zhuǎn)動(dòng)車輪的力越大。電動(dòng)助力轉(zhuǎn)向系統(tǒng)將要在轉(zhuǎn)向市場上扮演重要的角色,因?yàn)樗麄兏叩闹π阅?,更高的可靠性和低價(jià)格[1]。
圖1. EPS的結(jié)構(gòu)
EPS系統(tǒng)的效率優(yōu)勢是,只有需要用到的時(shí)候它才會被激活。因此,相比配備了傳統(tǒng)的HPS系統(tǒng)[2][3]的車輛可以降低約3-5%的油耗。方向盤轉(zhuǎn)矩傳感器和車速傳感器輸入信號;電動(dòng)馬達(dá)驅(qū)動(dòng)器輸出信號,EPS協(xié)助轉(zhuǎn)向。
汽車的電動(dòng)助力轉(zhuǎn)向由EPS的電子控制單元(ECU)控制。EPS系統(tǒng)在小型汽車上廣泛使用,因?yàn)樗鼈兇媪藙?dòng)力轉(zhuǎn)向助力器模塊。這種結(jié)果節(jié)省重量和空間同時(shí)提高了燃油經(jīng)濟(jì)性。EPS是一個(gè)復(fù)雜的系統(tǒng),采用傳感器不斷測量車輪扭矩,以保持車輛的路徑。通過不斷復(fù)位,以適應(yīng)不斷變化的路面情況或車輛轉(zhuǎn)彎。
根據(jù)輔助直流電動(dòng)機(jī)的布置,EPS分為三種形式:協(xié)助列類型EPS(C-EPS),協(xié)助齒輪類型EPS(P-EPS),和協(xié)助機(jī)架類型EPS(R-EPS)。C-EPS的硬件結(jié)構(gòu)如圖1所示。
C-EPS系統(tǒng)的車輛,如汽車和卡車通常包括方向盤,電動(dòng)馬達(dá),控制器,一個(gè)或多個(gè)傳感器,轉(zhuǎn)向軸和轉(zhuǎn)向齒輪裝配。舵機(jī)組件可以是一個(gè)齒輪齒條式,循環(huán)球式轉(zhuǎn)向齒輪傳動(dòng)裝置或任何其他合適的轉(zhuǎn)向器裝配。電動(dòng)機(jī)通常通過螺紋連接馬達(dá)和蝸輪連接加上轉(zhuǎn)向軸,一個(gè)扭矩傳感器提供反饋信號給控制器。反饋信號所需要的驅(qū)動(dòng)程序是轉(zhuǎn)動(dòng)方向盤。隨著驅(qū)動(dòng)的增加,電動(dòng)機(jī)的蝸輪旋轉(zhuǎn)并帶動(dòng)其他的蝸輪旋轉(zhuǎn)。蝸輪連接在轉(zhuǎn)向軸上減少了轉(zhuǎn)動(dòng)方向盤所需要的驅(qū)動(dòng)力。在本文中,根據(jù)電動(dòng)助力轉(zhuǎn)向控制系統(tǒng)的特點(diǎn),我們設(shè)計(jì)的硬件系統(tǒng)是采用單片機(jī)MC9S12DP256B。C-EPS的目的是使轉(zhuǎn)向更安全,更方便。
Ⅱ.控制單元的整體設(shè)計(jì)
在我們設(shè)計(jì)EPS的電控單元之前,知道這個(gè)系統(tǒng)的整體結(jié)構(gòu)是重要的。EPS的控制單元主要包括兩個(gè)模塊:邏輯電路模塊和功率驅(qū)動(dòng)模塊,如圖2所示。
圖2. ECU模塊
邏輯電路模塊由三部分組成:最小單片機(jī)系統(tǒng),外部信號處理電路和驅(qū)動(dòng)信號分配電路。功率驅(qū)動(dòng)模塊由兩部分組成:直流電動(dòng)機(jī)和H橋驅(qū)動(dòng)電路,包括H橋[6][7]。外部信號處理電路接收傳感器信號,包括轉(zhuǎn)向信號,電流信號和開關(guān)信號,然后通過A/D端口或其他I/O端口把這些信號轉(zhuǎn)換成合適的形式給單片機(jī)。該電路在輸入噪聲信號抑制也起著重要作用。
最小單片機(jī)系統(tǒng)指單片機(jī)能夠正常運(yùn)行的最低配置。這里我們主要定義它為必要的I/O端口和芯片硬件。驅(qū)動(dòng)信號分配電路過程是從MCU的PWM信號,然后發(fā)送到電機(jī)驅(qū)動(dòng)芯片PWM或脈沖寬度調(diào)制是指迅速脈沖數(shù)字信號在電路上模擬不同電壓的概念。這種方法通常用于驅(qū)動(dòng)不同強(qiáng)度或速度的電機(jī),取暖機(jī)或燈。
H橋驅(qū)動(dòng)電路實(shí)現(xiàn)了MOSFET的開關(guān)控制和一些保護(hù)功能。H橋由四個(gè)N溝道MOSFET組成。它的功能是控制直流電動(dòng)機(jī)旋轉(zhuǎn)。
EPS控制器的硬件結(jié)構(gòu)如圖3所示。
圖3. EPS的硬件邏輯圖
它顯示了典型車輛上的EPS控制器的結(jié)構(gòu)。MCU接受轉(zhuǎn)矩傳感器和速度傳感器信號,通過驅(qū)動(dòng)電路來驅(qū)動(dòng)馬達(dá)計(jì)算當(dāng)前電機(jī)的需求。馬達(dá)的能量是由外部繼電器和電機(jī)驅(qū)動(dòng)電路。連接到EPS的所有傳感器和執(zhí)行器由單片機(jī)控制。一旦系統(tǒng)異常,ECU警告燈將被點(diǎn)亮,發(fā)出警報(bào)信號,然后通過中斷電路切斷電源來阻止事故。單片機(jī)的輸入信號包括扭矩傳感器,角度傳感器,車速傳感器,發(fā)動(dòng)機(jī)轉(zhuǎn)速,電池電壓和通過直流電動(dòng)機(jī)的反饋電流。單片機(jī)的輸出信號時(shí)PWM信號,根據(jù)電機(jī)的實(shí)際需要改變占空比。
另外的,電機(jī)有一個(gè)離合控制電路。它是用來在減速機(jī)構(gòu)萬一失效的情況下斷開電機(jī)的。
Ⅲ.微處理器的選擇
飛思卡爾MC9S12DP256B微控制器單元是一個(gè)由標(biāo)準(zhǔn)片上外設(shè)組成的16位設(shè)備,包括一個(gè)16位中央處理單元(HCS12系列的CPU),256字節(jié)的閃存EEPROM,12.0K字節(jié)的RAM,4.0K字節(jié)的EEPROM,兩個(gè)異步串行通信接口(SCI),三個(gè)串行外設(shè)接口(SPI),一個(gè)8通道的IC/IO增強(qiáng)型捕捉定時(shí)器,兩個(gè)8通道10位模數(shù)轉(zhuǎn)換器(ADC),一個(gè)8通道脈沖寬度調(diào)制器(PWM),89離散數(shù)字I/O通道(端口A,端口B,端口K和端口E),20個(gè)離散數(shù)字I/O線帶中斷和開啟功能,五個(gè)A,B軟件兼容模塊(MSCAN12)和一條總線。這一系列的飛思卡爾芯片被廣泛應(yīng)用于汽車電子領(lǐng)域。單片機(jī)的功能和特點(diǎn)是適合于EPS系統(tǒng)的。圖4顯示了MC9S12DP256B設(shè)備的圖框。
圖4. MC9S12DP256B設(shè)備圖框
該系統(tǒng)資源映射中斷控制和總線接口管理系統(tǒng)集成模塊(SIM)。MC9S12DP256B有完整的16位數(shù)據(jù)路徑。然而,外部總線可以工作在8位窄模式,所以單一的8位寬度的存儲器可以是成本較低的系統(tǒng)。PLL電路允許功耗和性能能進(jìn)行調(diào)整,以適應(yīng)運(yùn)行需求。
Ⅳ.直流電動(dòng)機(jī)的驅(qū)動(dòng)電路設(shè)計(jì)
直流電動(dòng)機(jī)是EPS系統(tǒng)的執(zhí)行元件,電機(jī)驅(qū)動(dòng)電路對系統(tǒng)設(shè)計(jì)是非常重要的。在這個(gè)系統(tǒng)中,我們使用脈沖寬度調(diào)制技術(shù)控制H橋電路,這個(gè)是由四個(gè)MOSFET[8][9]組成的。
當(dāng)EPS系統(tǒng)工作時(shí),它需要電機(jī)正方向和反方向運(yùn)行,所以我們需要H橋電路來實(shí)現(xiàn),H橋電路系統(tǒng)如圖5所示。這個(gè)電路有四個(gè)MOSFET(V1~V4)和四個(gè)連續(xù)二極管(VD1~VD4)組成。當(dāng)電機(jī)左轉(zhuǎn),電流從+US流經(jīng)電機(jī)和V4流入負(fù)極。當(dāng)電機(jī)右轉(zhuǎn),電流反方向流。
圖5. H橋電路
由于它的最大工作電壓為12伏,它的最大電流為20安培,我們選擇IRF3205,它是高速N通道MOS,它的額定電流是110安培。
MOSFET更好的工作狀態(tài)顯示的它的高性能,它減少了開關(guān)時(shí)間,開關(guān)功耗,提高了電源轉(zhuǎn)換電路的運(yùn)行效率。MOSFET有三種驅(qū)動(dòng)形式:變壓器驅(qū)動(dòng),直接驅(qū)動(dòng)和光耦隔離驅(qū)動(dòng)。變壓器驅(qū)動(dòng)能隔離驅(qū)動(dòng)信號,動(dòng)力損失非常小。但是它的頻率受限制,不利于PWM信號傳輸。直接驅(qū)動(dòng)的方式適用于小容量和MOSFET不受保護(hù)的場合。光耦合器隔離的驅(qū)動(dòng)方式需要光耦合器具有更高的速度,對電源電壓具有更高的絕緣承受能力和較大的共同抑制比。我們選擇IR2130作為全橋驅(qū)動(dòng)。IR2130芯片是一種高電壓高速功率的MOSFET和帶三個(gè)獨(dú)立的高端與低端IGBT驅(qū)動(dòng)器參考輸出通道。
它采用高集成度的電頻轉(zhuǎn)換技術(shù),它大大簡化了功率器件的邏輯電路的要求,同時(shí)它也提高了驅(qū)動(dòng)電路的可靠性。它可以用來驅(qū)動(dòng)MOSFET或IGBT,總線電壓不高于600伏,最大正向峰值輸出驅(qū)動(dòng)電流是250MA,而反向峰值電流為500MA。IR2130經(jīng)常被用來驅(qū)動(dòng)BLDC電機(jī),但是它也能被用來驅(qū)動(dòng)BDC電機(jī)。
當(dāng)IR2130在正常工況下,6通道脈沖輸入信號被分為兩組。L1~L3信號通過輸出驅(qū)動(dòng)放大器功率器件直接驅(qū)動(dòng)低的電橋。信號H1~H3先通過IR2130內(nèi)部脈沖處理器和被三電平轉(zhuǎn)換器轉(zhuǎn)換成3路潛在的驅(qū)動(dòng)脈沖,然后通過3路輸出鎖存。最后經(jīng)過功率放大器之后,這些信號被發(fā)送到相應(yīng)的MOSFET。
一旦負(fù)載電流過大,從目前檢測到的單元電壓大于0.5伏,IR2130內(nèi)部電流將迅速扭轉(zhuǎn),從而使故障輸出邏輯處理單元降低,阻止3路脈沖信號處理器的輸出,所以整個(gè)IR2130輸出低,從而能保護(hù)功率管。在另一方面,IR2130的錯(cuò)誤腳本在同一時(shí)間給出故障指示。如果電源輸送的電壓低,IR2130的電壓檢測器將會翻轉(zhuǎn),它也進(jìn)行了類似的行動(dòng)[10]。
當(dāng)IR2130是受保護(hù)的,故障邏輯處理單元的輸出將保持故障狀態(tài)。當(dāng)故障信號消失,輸入信號LIN1~LIN3設(shè)置為高,我們可以清楚故障狀況。當(dāng)自舉電源電壓IR2130驅(qū)動(dòng)供給橋臂管低,驅(qū)動(dòng)信號探測器迅速采取行動(dòng),阻止輸出路徑以避免損壞。當(dāng)H橋臂的兩個(gè)相同的功率器件同時(shí)接收高的輸入信號時(shí),從IR2130輸出的兩路驅(qū)動(dòng)信號將會變低,從而避免了直接流經(jīng)橋臂的情況發(fā)生。
帶IR2130的電機(jī)驅(qū)動(dòng)電路如圖6所示。從MCU的PWM信號被發(fā)送到IR2130芯片內(nèi)部端口HO1和LO2直接控制MOSFET的V1和V4。通過反相芯片(74LS04)的PWM信號被發(fā)送到端口HO2和LO1控制MOSFET的V2和V3。PWM信號同時(shí)控制四個(gè)MOSFET,在這里我們使用雙極性PWM控制模式。當(dāng)占空比介于0和50%時(shí),電機(jī)左轉(zhuǎn)。當(dāng)占空比等于50%時(shí),電機(jī)停止。當(dāng)占空比大于50%時(shí),電機(jī)右轉(zhuǎn)[11][12]。
在電機(jī)驅(qū)動(dòng)電路中,KF157和IN4007是高速二極管,電阻R1~R4是用來限制MOSFET的驅(qū)動(dòng)電流,我們在這里選擇的阻止是10~30歐姆。直流電動(dòng)機(jī)連接MOC+和MOC-。
圖6. 驅(qū)動(dòng)電路
C4被稱為外部自舉電容,它的值大約是0.1uf~2uf,我們建議使用鉭電容。
自舉電容值可以由下式得到:
這里:
:高端設(shè)備的柵極電荷。
F:工作頻率。
(max):高端設(shè)備的最大靜態(tài)電流。
:在每個(gè)周期中的電平轉(zhuǎn)換電路要求。
(leak):自舉電容的電流。
:電源電壓。
:自舉二極管的正向壓降。
:低端設(shè)備或高端負(fù)載電壓。
五:結(jié)論
因?yàn)镸C9S12DP256B許多強(qiáng)大的功能,以及其豐富的芯片資源,通常,我們?yōu)榱说玫竭M(jìn)一步的應(yīng)用,只需增加一些簡單的外圍電路。
開發(fā)的硬件電路能有效地滿足電動(dòng)助力轉(zhuǎn)向系統(tǒng)的需要。
然而,電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)不只是依賴車輛的速度和扭矩信號,轉(zhuǎn)向角,轉(zhuǎn)向速度,橫向加速度,前軸電信號這些因素需要被考慮來提高EPS系統(tǒng)的系能。
在本文中,電動(dòng)助力轉(zhuǎn)向系統(tǒng)放大電路的設(shè)計(jì)和它的過程的設(shè)計(jì)是經(jīng)過討論的。為了獲得良好的控制效果,相應(yīng)的軟件設(shè)計(jì)是必要的。
EPS系統(tǒng)在發(fā)動(dòng)機(jī)效率,空間效率和環(huán)境兼容性方面比傳統(tǒng)的液壓助力轉(zhuǎn)向系統(tǒng)有許多優(yōu)勢。
汽車技術(shù)的發(fā)展趨勢是汽車產(chǎn)品電氣化。越來越多的電子控制裝置將被應(yīng)用于汽車領(lǐng)域。線控轉(zhuǎn)向(SBW)是EPS的發(fā)展方向。
致謝
這項(xiàng)工作的財(cái)政支持是由江西省政府和南昌大學(xué)提供的。
參考文獻(xiàn)
[1] 田中.EPS電控轉(zhuǎn)矩的主動(dòng)轉(zhuǎn)向性.AVEC’04,pp.501-506.
[2] J.M·米勒,D·金·卡明斯基,惠普.新一代汽車電氣系統(tǒng).國際運(yùn)輸電子大會,凱越麗晶酒店,迪爾伯恩(美國),1988.10,pp.19-21.
[3] H.Schwab,A.Klonne,S.Reck,I.Ramesohl,G.Sturtzer,B.Keith.汽車應(yīng)用的永磁電機(jī)驅(qū)動(dòng)器的可靠性評估[P],圖盧茲(法國),2003.
[4] T.A·凱,一種只使用三種程控交換機(jī)的可變頻率的三相異步電機(jī)驅(qū)動(dòng)系統(tǒng),IEEE的工業(yè)應(yīng)用,第37期,11-12,2001,pp.1739-1745.
[5] 馬努·帕爾馬,約翰·紅,輔助轉(zhuǎn)向系統(tǒng)建模和電力傳感器控制器優(yōu)化設(shè)計(jì)[P],第3卷,2002,pp.1784-1789.
[6] 夏普·R.S和格蘭杰·R,車在停車速度轉(zhuǎn)向扭矩,機(jī)械工程師學(xué)會,第217期,D部分:汽車工程,2003,pp.87-96.
[7] Neureder,U,四輪定位調(diào)查,機(jī)械工程師學(xué)會公訴,第216期,D部分:汽車工程[P],2002,pp.267-277.
[8] A,T.Zaremba,M.K Liubakka,R,M.Stuntz,在電動(dòng)助力轉(zhuǎn)向系統(tǒng)設(shè)計(jì)中控制和轉(zhuǎn)向感覺的問題[P],1988,pp.36-40.
[9] L. Chédot,G·弗里德里希,內(nèi)部永磁同步集成起動(dòng)發(fā)電機(jī)的最優(yōu)控制[P],2003.
[10] 久保田,車輛運(yùn)動(dòng)的瞬態(tài)輔助轉(zhuǎn)向影響的特征[P],JSAE研討會,75-05號,2005,pp.9-14.
[11] R.羽山,K.崎崇子,S.野,車輛穩(wěn)定性控制改善[P],智能汽車研討會,2000,pp.596-601.
[12] P.R.Nicastri,H.黃,汽車42伏啟動(dòng)[J],第15期,2005.8,pp.25-31.
一、畢業(yè)設(shè)計(jì)(論文)的內(nèi)容
輕型載貨汽車轉(zhuǎn)向器的設(shè)計(jì)(具體車型由學(xué)生自定)
二、畢業(yè)設(shè)計(jì)(論文)應(yīng)完成的工作
1.完成不少于1.5萬漢字的設(shè)計(jì)說明書
2.不少于折合成圖幅為AO號的圖紙3張(其中計(jì)算機(jī)繪圖量、手工繪圖量均不得少于折合成圖幅為 A1號的圖紙1張)
3.翻譯一篇與論文內(nèi)容相關(guān)的外文資料(約3000漢字)。
三、畢業(yè)設(shè)計(jì)(論文)進(jìn)程安排
時(shí) 間
工作內(nèi)容
2011年
11.14~11.18(12周)
下達(dá)設(shè)計(jì)任務(wù),收集相關(guān)資料
11.21~12.2(13周~14周)
畢業(yè)實(shí)習(xí),收集、整理資料
12.5~12.9(15周)
閱讀、消化資料,完成開題報(bào)告,開題
2011年2012年
12.12~1.6(16周~19周)
完成設(shè)計(jì)說明書,完成外文翻譯工作
2012年
1.9~3.2(20周~3周)
根據(jù)設(shè)計(jì)說明書,完成機(jī)械圖紙繪制工作
3.5~3.16(4周~5周)
修改、打印相關(guān)材料, 完成答辯
四、參考資料及文獻(xiàn)查詢方向、范圍
1. 余志生. 汽車?yán)碚摚跰]. 北京:機(jī)械工業(yè)出版社,
2. 王望予. 汽車設(shè)計(jì)[M]. 北京:機(jī)械工業(yè)出版社,
3. 邱宣懷. 機(jī)械設(shè)計(jì)[M].北京:高等教育出版社,
4. 機(jī)械設(shè)計(jì)手冊. 北京:機(jī)械工業(yè)出版社,
一、 選題的背景和意義(所選課題的歷史背景、國內(nèi)外研究現(xiàn)狀和發(fā)展趨勢)
轉(zhuǎn)向器是轉(zhuǎn)向系統(tǒng)的減速傳動(dòng)裝置。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有四種:齒輪齒條式、循環(huán)球式、蝸桿銷式、蝸桿滾輪式。目前國內(nèi)外主流的轉(zhuǎn)向器是齒輪齒條式轉(zhuǎn)向器和循環(huán)球式轉(zhuǎn)向器。齒輪齒條式轉(zhuǎn)向器的主要優(yōu)點(diǎn)是:結(jié)構(gòu)簡單、緊湊、體積小、質(zhì)量輕;傳動(dòng)效率高達(dá)90%;可自動(dòng)消除齒間間隙;沒有轉(zhuǎn)向搖臂和直拉桿,轉(zhuǎn)向輪轉(zhuǎn)角可以增大;制造成本低。齒輪齒條式轉(zhuǎn)向器的主要缺點(diǎn)是:逆效率高(60%~70%)。因此,汽車在不平路面上行駛時(shí),發(fā)生在轉(zhuǎn)向輪與路面之間的沖擊力,大部分能傳至轉(zhuǎn)向盤。根據(jù)輸入齒輪位置和輸出特點(diǎn)不同,齒輪齒條式轉(zhuǎn)向器有四種形式:中間輸入,兩端輸也;側(cè)面輸入,兩端輸出;側(cè)面輸入,中間輸出;側(cè)面輸入,一端輸出。根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對前軸位置的不同,在汽車上有四種布置形式:轉(zhuǎn)向器位于前軸后方,后置梯形;轉(zhuǎn)向器位于前軸后方,前置梯形;轉(zhuǎn)向器位于前軸前方,后置梯形;轉(zhuǎn)向器位于前軸前方,前置梯形。齒輪齒條式轉(zhuǎn)向器廣泛應(yīng)用于微型、普通級、中級和中高級轎車上。裝載量不大、前輪采用獨(dú)立懸架的貨車和客車也用齒輪齒條式轉(zhuǎn)向器。循環(huán)球式轉(zhuǎn)向器的優(yōu)點(diǎn)是:傳動(dòng)效率可達(dá)到75%~85%;轉(zhuǎn)向器的傳動(dòng)比可以變化;工作平穩(wěn)可靠;齒條和齒扇之間的間隙調(diào)整容易;適合用來做整體式動(dòng)力轉(zhuǎn)向器。循環(huán)球式轉(zhuǎn)向器的主要缺點(diǎn)是:逆效率高,結(jié)構(gòu)復(fù)雜,制造困難,制造精度要求高。循環(huán)球式轉(zhuǎn)向器主要用于貨車和客車上。今后轉(zhuǎn)向裝置的發(fā)展趨勢是:轉(zhuǎn)向器專業(yè)化生產(chǎn),循環(huán)球式轉(zhuǎn)向器在國外實(shí)現(xiàn)了專業(yè)化生產(chǎn),同時(shí)以專業(yè)廠為主、大力進(jìn)行試驗(yàn)和研究,大大提高了產(chǎn)品的產(chǎn)量和質(zhì)量。動(dòng)力轉(zhuǎn)向是發(fā)展方向,動(dòng)力轉(zhuǎn)向有3種形式:整體式、半分置式及聯(lián)閥式動(dòng)力轉(zhuǎn)向結(jié)構(gòu)。
從發(fā)展趨勢上看,國外整體式轉(zhuǎn)向器發(fā)展較快,而整體式轉(zhuǎn)向器中轉(zhuǎn)閥結(jié)構(gòu)是目前發(fā)展的方向。
二、 研究的基本內(nèi)容和擬解決的主要問題
我研究的基本內(nèi)容是輕型載貨汽車轉(zhuǎn)向器的設(shè)計(jì)。設(shè)計(jì)的轉(zhuǎn)向器類型是齒輪齒條式轉(zhuǎn)向器。采用非獨(dú)立懸架,轉(zhuǎn)向器位于前軸前方,梯形后置,中間輸入,兩端輸出,直齒齒輪齒條,圓形斷面。擬解決的主要問題如下:齒輪的設(shè)計(jì)校核、齒條的設(shè)計(jì)校核、軸承的選擇、齒輪軸的設(shè)計(jì)、其他零件的選擇、機(jī)械圖紙繪制。
三、 研究方法及措施
研究的方法主要如下:通過查閱、收集、消化相關(guān)資料,根據(jù)參數(shù)按要求完成設(shè)計(jì)說明書,然后根據(jù)設(shè)計(jì)說明書的內(nèi)容繪制機(jī)械圖紙。修改圖紙,完成答辯。
車型: BJ121型輕型載貨汽車
基本參數(shù)如下:
驅(qū)動(dòng)型式 FR4×2
軸距 2750
前輪/后輪輪距 1440/1440
最小轉(zhuǎn)彎半徑 6.9m
滿載軸荷分配:前/后 877/1643(kg)
前輪氣壓 200(KPa)
主銷偏移距a 50mm
轉(zhuǎn)向節(jié)臂長L 200mm
方向盤直徑 400mm
四、研究工作的步驟、進(jìn)度
時(shí)間
工作內(nèi)容
2011年
11.14~11.18(12周)
下達(dá)設(shè)計(jì)任務(wù),收集相關(guān)資料
11.21~12.2(13周~14周)
畢業(yè)實(shí)習(xí),收集、整理資料
12.5~12.9(15周)
閱讀、消化資料,完成開題報(bào)告,開題
2011年
2012年
12.12~1.6(16周~19周)
完成設(shè)計(jì)說明書,完成外文翻譯工作
2012年
1.9~3.2(20周~3周)
根據(jù)設(shè)計(jì)說明書,完成機(jī)械圖紙繪制工作
3.5~3.16(4周~5周)
修改、打印相關(guān)材料, 完成答辯
五、主要參考文獻(xiàn)(其中外文文獻(xiàn)不少于2篇)
[1] 陳家瑞.汽車構(gòu)造.第三版.下冊[M].北京:機(jī)械工業(yè)出版社,2009.2
[2] 過學(xué)迅,鄧亞東. 汽車設(shè)計(jì).[M].北京:人民交通出版社,2005.8
[3] 黃華梁,彭文生.機(jī)械設(shè)計(jì)基礎(chǔ).第四版.[M].北京:高等教育出版社,2007.5
[4] 余志生.汽車?yán)碚?第五版.[M]北京:機(jī)械工業(yè)出版社,2009.3
[5] 王伯平.互換性與測量技術(shù)基礎(chǔ).第三版[M].北京:機(jī)械工業(yè)出版社,2008.12
[6] 黃茂林.機(jī)械原理.第二版[M].北京:機(jī)械工業(yè)出版社,2010.4
[7] 史新民.常用機(jī)構(gòu)與零件設(shè)計(jì).[M].北京:清華大學(xué)出版社,2010.12
[8] 中國機(jī)械設(shè)計(jì)大典編委會.中國機(jī)械設(shè)計(jì)大典.第3卷[M].南昌:江西科學(xué)技術(shù)出版社,2008.2
[9] 秦大同,謝里陽. 現(xiàn)代機(jī)械設(shè)計(jì)手冊[M].北京:化學(xué)工業(yè)出版社,2011.1
[10] 毛昕,張秀艷,黃英,肖平陽. 畫法幾何及機(jī)械制圖.第三版[M].北京:高等教育出版社,2004.7
[11] 曾東建.汽車制造工藝學(xué)[M].北京:機(jī)械工業(yè)出版社,2005.9
[12] 劉鴻文.材料力學(xué).第四版[M].北京:高等教育出版社,2004.1
[13] 陶亦亦,潘玉嫻.工程材料與機(jī)械制造基礎(chǔ)[M].北京:化學(xué)工業(yè)出版社,2006
[14] 汪杰強(qiáng).“五菱之光”轉(zhuǎn)向系統(tǒng)設(shè)計(jì)[J].上汽通用五菱汽車股份有限公司
[15] 劉冰.齒輪齒條轉(zhuǎn)向器的建模分析[J].上海工程技術(shù)大學(xué) 城市軌道交通學(xué)院
[16] 賀敬良,秦建旭.變速比轉(zhuǎn)向器齒扇副齒合理論研究[J] .北京信息科技大學(xué)機(jī)電工程學(xué)院
[17] 張敏中.齒輪-齒條式轉(zhuǎn)向器轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J]
[18] 賈巨民,吳宏基,錢名海,唐天元,劉建.汽車循環(huán)球式轉(zhuǎn)向器側(cè)隙的研究1993年第10期
[19] 史建鵬.汽車轉(zhuǎn)向輪前束與車輪外傾角的設(shè)計(jì)匹配[J].東風(fēng)汽車公司技術(shù)中心
[20] 孫成玉,言夢林.汽車轉(zhuǎn)向梯形機(jī)構(gòu)最佳方案的設(shè)計(jì)[J].2002
[21] 齊淑范,何若天.轉(zhuǎn)向器實(shí)驗(yàn)用的抗彎曲型扭矩傳感器[J].1991
[22] 吳文江,杜彥良.電動(dòng)轉(zhuǎn)向系統(tǒng)助力性能研究[J].中國安全科學(xué)報(bào).2003.7.第13卷
[23].Zhao Wangzhong,Lin Yi,Wei Jianwei,Shi Guobiao. Control strategy of novel electric power Steering systen integrated with active front steering function.2011.6:1515-1520
[24] Li Huimin,Gao Yingjie,Gu Yanpeng,Yang Zhiyu,Dang Qi.Design of an Electro-hydraulic Steering System for Wheeled Hydraulic Excavator.2007.6
[25] Yang Bo,Wang Xuelin,Hu Yujin. Flexible 2-Dof Steering Model of Multi-Axle Heavy-Duty Vehicle.Chinese Journal of Mechanical Engineering.Vol.17,No.4,2004
六、導(dǎo)師評語:
簽字: 年 月 日
4
廣西工學(xué)院鹿山學(xué)院本科生畢業(yè)設(shè)計(jì)
摘要
汽車轉(zhuǎn)向系統(tǒng)是決定汽車操縱穩(wěn)定性和主動(dòng)安全性的關(guān)鍵。轉(zhuǎn)向器是轉(zhuǎn)向系統(tǒng)的重要組成部分。它的作用是:增大轉(zhuǎn)向盤傳到轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的力和改變力的傳遞方向。而轉(zhuǎn)向器中的類型中,齒輪齒條式轉(zhuǎn)向器由于其自身的特點(diǎn)被廣泛應(yīng)用于各種汽車上。本設(shè)計(jì)選擇BJ121型輕型載貨汽車為車型,設(shè)計(jì)齒輪齒條式轉(zhuǎn)向器。其主要內(nèi)容有介紹轉(zhuǎn)向器的設(shè)計(jì)參數(shù),齒輪齒條及其他零件的設(shè)計(jì)、校核。
關(guān)鍵詞:齒輪齒條;設(shè)計(jì);轉(zhuǎn)向器;校核
Abstract
The steering system is to determine the vehicle handing and stability and active safety
the key. The steering is an important part of the steering system. Its role is to increase the
steerting wheel to spread the force of the steering linkage and change the direction of force
transmission. Type of steering gear, rack and pinion steering gear because of its characteristics are widely used in a variety of vehicle. This design choice the BJ121 light
tuck models, the design of rack and pinion steering. Its main design parameters introduce
steering rack and pinion and other parts of the design.
Key Words: rack and pinion; design; steering; check.
34
目錄
1 引言 1
2 齒輪齒條式轉(zhuǎn)向器設(shè)計(jì)方案選擇 2
2.1 轉(zhuǎn)向系統(tǒng)的簡介 2
2.1.1 轉(zhuǎn)向操縱機(jī)構(gòu) 2
2.1.2 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu) 3
2.2 轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求 4
2.3 轉(zhuǎn)向器 5
2.4 對轉(zhuǎn)向器的要求 7
2.5 轉(zhuǎn)向系的主要性能參數(shù)介紹 7
2.5.1 轉(zhuǎn)向器傳動(dòng)效率 7
2.5.2 轉(zhuǎn)向盤自由行程 9
2.5.3 轉(zhuǎn)向器角傳動(dòng)比的變化規(guī)律 9
2.5.4 轉(zhuǎn)向器的傳動(dòng)間隙 9
2.5.5 轉(zhuǎn)向系的剛度 10
2.5.6 轉(zhuǎn)向阻力矩 10
2.5.7 傳動(dòng)比 11
2.5.8 轉(zhuǎn)向梯形 11
3 轉(zhuǎn)向系統(tǒng)的計(jì)算 16
4 齒輪齒條的設(shè)計(jì) 20
4.1 齒輪的設(shè)計(jì) 20
4.2 齒條的設(shè)計(jì) 20
5 齒輪齒條的校核 21
5.1 齒輪彎曲疲勞強(qiáng)度計(jì)算 21
5.1.1 計(jì)算許用彎曲應(yīng)力 21
5.1.2 計(jì)算齒根彎曲強(qiáng)度并校核 21
5.2 齒面接觸強(qiáng)度校核 22
5.2.1 計(jì)算許用接觸應(yīng)力 22
5.2.2 計(jì)算齒面接觸強(qiáng)度并校核 23
5.3 驗(yàn)算齒輪模數(shù) 23
6 齒輪軸的設(shè)計(jì) 24
6.1 齒輪齒條傳動(dòng)受力分析 24
6.2 軸的強(qiáng)度校核 24
6.2.1 軸的支撐反力的算計(jì) 24
6.2.2 判斷危險(xiǎn)剖面 25
6.2.3 軸的彎扭合成強(qiáng)度校核 26
6.2.4 軸的疲勞強(qiáng)度安全系數(shù)的校核 26
7 其他零件的設(shè)計(jì)選擇 28
7.1 彈簧的選擇 28
7.2 軸承的選擇 28
7.3 螺釘?shù)倪x擇 28
7.4 彈簧壓塊的設(shè)計(jì) 28
7.5 齒條支撐的設(shè)計(jì) 29
7.6 軸承壓塊的設(shè)計(jì) 29
結(jié)束語 30
致 謝 31
參考文獻(xiàn) 32
廣西工學(xué)院鹿山學(xué)院本科生畢業(yè)設(shè)計(jì)
1 引言
汽車在行駛過程中,需按駕駛員的意志經(jīng)常改變其行駛方向,即所謂汽車轉(zhuǎn)向。就輪式汽車而言,實(shí)現(xiàn)汽車轉(zhuǎn)向的方法是駕駛員通過一套專設(shè)的機(jī)構(gòu),使汽車轉(zhuǎn)向橋(一般是前橋)上的車輪(轉(zhuǎn)向輪)相對于汽車縱軸線偏轉(zhuǎn)一定角度。在汽車直線行駛時(shí),轉(zhuǎn)向輪往往也會受到路面?zhèn)认蚋蓴_力的作用,自動(dòng)偏轉(zhuǎn)而改變行駛方向。此時(shí),駕駛員也可以利用這套機(jī)構(gòu)使轉(zhuǎn)向輪向相反的方向偏轉(zhuǎn),從而使汽車恢復(fù)原來的行駛方向。這一套用來改變或恢復(fù)汽車行駛方向的專設(shè)機(jī)構(gòu),稱為汽車轉(zhuǎn)向系統(tǒng)。
轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時(shí),保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。汽車轉(zhuǎn)向系統(tǒng)的功用就是保證汽車能按駕駛員的意志而進(jìn)行轉(zhuǎn)向行駛。因此,轉(zhuǎn)向系統(tǒng)的性能直接影響著汽車的操縱穩(wěn)定性和安全性。
對轉(zhuǎn)向系統(tǒng)產(chǎn)品的需求隨著汽車化的提高而提高而發(fā)生著變化。最初駕駛員們只希望比較容易地操作轉(zhuǎn)向系統(tǒng),而后則追求在高速行駛的穩(wěn)定性、舒適性和良好的操縱感。
據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒條齒輪式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點(diǎn)是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動(dòng)機(jī)的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占35%。
綜合上述對有關(guān)轉(zhuǎn)向器品種的使用分析,得出以下結(jié)論:
循環(huán)球式轉(zhuǎn)向器和齒輪齒條式轉(zhuǎn)向器,已成為當(dāng)今世界汽車上主要的兩種轉(zhuǎn)向器;而蝸輪蝸桿式轉(zhuǎn)向器和蝸桿肖式轉(zhuǎn)向器,正在逐步被淘汰或保留較小的地位。
在小客車上發(fā)展轉(zhuǎn)向器的觀點(diǎn)各異,美國和日本重點(diǎn)發(fā)展循環(huán)球式轉(zhuǎn)向器,比率都已達(dá)到或超過90%;西歐則重點(diǎn)發(fā)展齒輪齒條式轉(zhuǎn)向器,比率超過50%,法國已高達(dá)95%。
本次設(shè)計(jì)設(shè)計(jì)的是齒輪齒條式轉(zhuǎn)向器。
2 齒輪齒條式轉(zhuǎn)向器設(shè)計(jì)方案選擇
在設(shè)計(jì)齒輪齒條式轉(zhuǎn)向器之前,我介紹下轉(zhuǎn)向系統(tǒng)的一些知識和轉(zhuǎn)向器的一些知識,然后再細(xì)入了解齒輪齒條式轉(zhuǎn)向器。
本次設(shè)計(jì)是輕型載貨汽車轉(zhuǎn)向器的設(shè)計(jì)。選擇的是齒輪齒條式轉(zhuǎn)向器。采用非獨(dú)立懸架,轉(zhuǎn)向器位于前軸前方,梯形后置,中間輸入,兩端輸出,直齒齒輪齒條,圓形斷面。
2.1 轉(zhuǎn)向系統(tǒng)的簡介
用來改變或保持汽車行駛或倒退方向的一些列裝置稱為汽車轉(zhuǎn)向系統(tǒng)(steering system)。汽車轉(zhuǎn)向系統(tǒng)對汽車的行駛安全至關(guān)重要。
汽車轉(zhuǎn)向系統(tǒng)按轉(zhuǎn)向能源的不同,分為機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)兩大類。
機(jī)械轉(zhuǎn)向系統(tǒng)以駕駛員的體力作為轉(zhuǎn)向能源,其中所有傳力件都是機(jī)械的。它主要由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)三大部分組成。如圖2-1所示。
圖2-1轉(zhuǎn)向系統(tǒng)示意圖
2.1.1 轉(zhuǎn)向操縱機(jī)構(gòu)
1).轉(zhuǎn)向操縱機(jī)構(gòu)的組成和布置
從轉(zhuǎn)向盤到轉(zhuǎn)向傳動(dòng)軸這一系列的零部件屬于轉(zhuǎn)向操縱機(jī)構(gòu)。它包括轉(zhuǎn)向盤、轉(zhuǎn)向柱管、轉(zhuǎn)向軸、上萬向節(jié)、下萬向節(jié)和轉(zhuǎn)向傳動(dòng)軸等。轉(zhuǎn)向柱管中部用橡膠墊和半圓形沖壓轉(zhuǎn)向柱管支架固定在駕駛室前圍板上,下端插入鑄鐵轉(zhuǎn)向柱管支座的孔中,支座則固定在轉(zhuǎn)向操縱機(jī)構(gòu)支架上。
穿過轉(zhuǎn)向柱管的轉(zhuǎn)向軸上端借轉(zhuǎn)向軸襯套支承,下端則支承在轉(zhuǎn)向柱管支座中的圓錐滾子軸承上,其軸向位置由轉(zhuǎn)向軸限位彈簧限定。轉(zhuǎn)向軸通過萬向傳動(dòng)裝置與轉(zhuǎn)向器中的轉(zhuǎn)向蝸桿相連。下萬向節(jié)與轉(zhuǎn)向傳動(dòng)軸用滑動(dòng)花鍵連接。
2).轉(zhuǎn)向盤
轉(zhuǎn)向盤由輪緣、輪輻和輪轂組成。輪輻一般為三根輻條或四根輻條,也有用兩根
輻條的。轉(zhuǎn)向盤輪轂孔細(xì)牙內(nèi)花鍵,借此與轉(zhuǎn)向軸連接。轉(zhuǎn)向盤內(nèi)部由成形的金屬骨架構(gòu)成。骨架外面一般包有柔軟的合成橡膠或樹脂,也有包皮革的,這樣可有良好的手感,而且還可以防止手心出汗時(shí)握轉(zhuǎn)向盤打滑。
當(dāng)汽車發(fā)生碰撞時(shí),從安全性考慮,不僅要求轉(zhuǎn)向盤應(yīng)具有柔軟的外表皮,起到緩沖作用,而且還要求轉(zhuǎn)向盤在撞車時(shí),其骨架能產(chǎn)生一定變形,以吸收沖擊能量,減輕駕駛員受傷的程度。
3).轉(zhuǎn)向軸和轉(zhuǎn)向柱管的吸能裝置
轉(zhuǎn)向軸是連接轉(zhuǎn)向盤和轉(zhuǎn)向器的傳動(dòng)件,并傳遞它們之間的轉(zhuǎn)矩。轉(zhuǎn)向柱管安裝
在車身上,支承著轉(zhuǎn)向盤。轉(zhuǎn)向軸從轉(zhuǎn)向柱管中穿過,支承在柱管內(nèi)的軸承和襯套上。
對于轎車,除要求裝有吸能式轉(zhuǎn)向盤外,還要求轉(zhuǎn)向柱管也必須備有緩和沖擊的吸能裝置。轉(zhuǎn)向軸和轉(zhuǎn)向柱管的吸能裝置有多種形式。其基本結(jié)構(gòu)原理是,當(dāng)受到巨大沖擊時(shí),轉(zhuǎn)向軸產(chǎn)生軸向位移,使支架或某些支承件產(chǎn)生塑性變形,從而吸收沖擊能量。
2.1.2 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的功用是將轉(zhuǎn)向器輸出的力和運(yùn)動(dòng)傳到轉(zhuǎn)向橋兩側(cè)的轉(zhuǎn)向節(jié),使兩
側(cè)轉(zhuǎn)向輪偏轉(zhuǎn),并使兩轉(zhuǎn)向輪偏轉(zhuǎn)角按一定關(guān)系變化,以保證汽車轉(zhuǎn)向時(shí)車輪與地面的相對滑動(dòng)盡可能小。
轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的組成和布置,因轉(zhuǎn)向器位置和轉(zhuǎn)向輪懸架類型不同而異。
1).與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu),主要包括轉(zhuǎn)向搖臂、轉(zhuǎn)向直拉桿、轉(zhuǎn)向節(jié)臂
和轉(zhuǎn)向梯形臂。在前橋僅為轉(zhuǎn)向橋的情況下,由轉(zhuǎn)向橫拉桿和左、右梯形臂組成的轉(zhuǎn)向梯形一般布置在前橋之后。當(dāng)轉(zhuǎn)向輪處于與汽車直線行駛相應(yīng)的中立位置時(shí),梯形臂與橫拉桿在與道路平行的平面(水平平面)內(nèi)的交角。在發(fā)動(dòng)機(jī)位置比較低或轉(zhuǎn)向橋兼充驅(qū)動(dòng)橋的情況下,為避免運(yùn)動(dòng)干涉,往往將轉(zhuǎn)向梯形布置在前橋之前。此時(shí),上述交角。若轉(zhuǎn)向搖臂不是在汽車縱向平面內(nèi)前后擺動(dòng),而是在與道路平行的平面內(nèi)左右擺動(dòng),則可將轉(zhuǎn)向直拉桿橫置,并借球頭銷直接帶動(dòng)轉(zhuǎn)向橫拉桿,使兩側(cè)梯形臂轉(zhuǎn)動(dòng)。
轉(zhuǎn)向搖臂是轉(zhuǎn)向器傳動(dòng)副與轉(zhuǎn)向直拉桿間的傳動(dòng)件。
轉(zhuǎn)向直拉桿是轉(zhuǎn)向搖臂與轉(zhuǎn)向節(jié)臂之間的傳動(dòng)桿件。在轉(zhuǎn)向輪偏轉(zhuǎn)而且因懸架彈性變形而相對于車架跳動(dòng)時(shí),轉(zhuǎn)向直拉桿與轉(zhuǎn)向搖臂及轉(zhuǎn)向節(jié)臂的相對運(yùn)動(dòng)都是空間運(yùn)動(dòng)。因此,為了不發(fā)生運(yùn)動(dòng)干涉,三者之間的連接件都是球形鉸鏈。直拉桿體是一段兩端擴(kuò)大的鋼管。其前端帶有球頭銷。球頭銷的尾端可以用螺母固定于轉(zhuǎn)向節(jié)臂的端部。兩個(gè)球頭座在壓縮彈簧的作用下,將球頭銷的球頭夾持住。為保證球頭與座的潤滑,可以從油嘴注入潤滑脂,使其 直拉桿端部官腔。供球頭拆裝時(shí)出入的孔口用耐油橡膠防塵墊封蓋。壓縮彈簧隨時(shí)補(bǔ)償球頭與座的磨損,保證兩者之間無間隙,并可緩和經(jīng)車輪和轉(zhuǎn)向節(jié)傳來的路面沖擊。彈簧預(yù)緊力可用端部螺塞調(diào)節(jié),調(diào)好后需用開口銷固定螺塞位置。當(dāng)球頭銷作用在內(nèi)球頭座上的沖擊力超過壓縮彈簧預(yù)緊力時(shí),彈簧便進(jìn)一步變形而吸收沖擊能量。
直拉桿體后端可以嵌裝轉(zhuǎn)向搖臂球頭銷。這一端的壓縮彈簧也裝在球頭座后方。這樣,兩個(gè)壓縮彈簧可分別在沿軸線的不同方向上起緩沖作用。自球頭銷傳來的向后的沖擊力由前壓縮彈簧承受。當(dāng)球頭銷受到向前的沖擊力時(shí),沖擊力依次經(jīng)過前球頭座、前端部螺塞、直拉桿體和后端部螺塞傳給后壓縮彈簧。
轉(zhuǎn)向橫拉桿式轉(zhuǎn)向梯形機(jī)構(gòu)的底邊。轉(zhuǎn)向橫拉桿由橫拉桿體和旋裝在兩端的橫拉桿接頭組成。兩端的接頭結(jié)構(gòu)相同,球頭銷的尾部與梯形臂相連。上、下球頭座用聚甲醛制成,有很好的耐磨性。裝配時(shí),兩球頭座的凹凸部分相嵌合。彈簧保證兩球頭座與球頭緊密接觸。并起緩沖作用。兩接頭借螺紋與橫拉桿體聯(lián)接。接頭螺紋部分有切口,故具有彈性。接頭旋裝到橫拉桿體上后,用夾緊螺栓夾緊。橫拉桿體兩端的螺紋,一端為右旋,一端為左旋。因此,在旋松夾緊螺栓以后,轉(zhuǎn)動(dòng)橫拉桿體,即可改變轉(zhuǎn)向橫拉桿的總長度,從而可調(diào)整轉(zhuǎn)向輪前束。
2).與獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)
當(dāng)轉(zhuǎn)向輪采用獨(dú)立懸架時(shí),每個(gè)轉(zhuǎn)向輪分別相對于車架作獨(dú)立運(yùn)動(dòng),因而轉(zhuǎn)向橋
必須是斷開式的。與此相應(yīng),轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)中的轉(zhuǎn)向梯形也必須分成兩段或三段,并且由在平行于路面的平面中擺動(dòng)的轉(zhuǎn)向搖臂直接帶動(dòng)或通過轉(zhuǎn)向直拉桿帶動(dòng)。
2.2 轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求
1).汽車轉(zhuǎn)彎行駛時(shí),全部車輪應(yīng)繞瞬時(shí)轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項(xiàng)要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
2).汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動(dòng)返回到直線行駛位置,并穩(wěn)定行駛。
3).汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動(dòng)。
4).轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)和懸架導(dǎo)向裝置共同工作時(shí),由于運(yùn)動(dòng)不協(xié)調(diào)使車輪產(chǎn)生的擺動(dòng)應(yīng)最小。
5).保證汽車有較高的機(jī)動(dòng)性,具有迅速和小轉(zhuǎn)彎行駛能力。
6).操縱輕便。
7).轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
8).轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機(jī)構(gòu)。
9).在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時(shí),轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
10).進(jìn)行運(yùn)動(dòng)校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動(dòng)方向一致。
正確設(shè)計(jì)轉(zhuǎn)向梯形機(jī)構(gòu),可以保證汽車轉(zhuǎn)彎行駛時(shí),全部車輪應(yīng)繞瞬時(shí)轉(zhuǎn)向中心旋轉(zhuǎn)。
轉(zhuǎn)向輪的自動(dòng)回正能力決定于轉(zhuǎn)向輪的定位參數(shù)和轉(zhuǎn)向器逆效率的大小.合理確定轉(zhuǎn)向輪的定位參數(shù),正確選擇轉(zhuǎn)向器的形式,可以保證汽車具有良好的自動(dòng)回正能力。
轉(zhuǎn)向系中設(shè)置有轉(zhuǎn)向減振器時(shí),能夠防止轉(zhuǎn)向輪產(chǎn)生自振,同時(shí)又能使傳到轉(zhuǎn)向盤上的反沖力明顯降低。
為了使汽車具有良好的機(jī)動(dòng)性能,必須使轉(zhuǎn)向輪有盡可能大的轉(zhuǎn)角,其最小轉(zhuǎn)彎半徑能達(dá)到汽車軸距的倍。
轉(zhuǎn)向操縱的輕便性通常用轉(zhuǎn)向時(shí)駕駛員作用在轉(zhuǎn)向盤上的切向力大小和轉(zhuǎn)向盤轉(zhuǎn)動(dòng)圈數(shù)多少兩項(xiàng)指標(biāo)來評價(jià)。
轎車轉(zhuǎn)向盤從中間位置轉(zhuǎn)到第一端的圈數(shù)不得超過2.0圈,貨車則要求不超過3.0圈。
2.3 轉(zhuǎn)向器
隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有蝸桿指銷式(WP型)、蝸桿滾輪式(WR型)、循環(huán)球式(BS型)、齒條齒輪式(RP型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。
1).齒輪齒條式轉(zhuǎn)向器是最常見的轉(zhuǎn)向器。其基本結(jié)構(gòu)是一對相互嚙合的小齒輪和齒條。由與軸做成一體的轉(zhuǎn)向輪和常與轉(zhuǎn)向橫拉桿做成一體的齒條組成。轉(zhuǎn)向軸帶動(dòng)小齒輪旋轉(zhuǎn)時(shí),齒條便做直線運(yùn)動(dòng)。有時(shí),靠齒條來直接帶動(dòng)橫拉桿,就可使轉(zhuǎn)向輪轉(zhuǎn)向。是一種最簡單的轉(zhuǎn)向器。具有結(jié)構(gòu)簡單、成本低廉,體積小,緊湊,質(zhì)量輕,剛性大,轉(zhuǎn)向靈敏,制造容易,正、逆效率都高以及便于布置等優(yōu)點(diǎn),傳動(dòng)效率高達(dá)90%;而且特別適合與燭式和麥弗遜式懸架配用,因此,目前它在轎車和微型、輕型貨車上得到了廣泛的應(yīng)用。
2).循環(huán)球式轉(zhuǎn)向器也是國內(nèi)外汽車上應(yīng)用比較多的一種結(jié)構(gòu)形式。循環(huán)球式轉(zhuǎn)向器由螺桿和螺母共同形成的螺旋槽內(nèi)裝有鋼珠構(gòu)成傳動(dòng)副,以及螺母上齒條與搖臂軸上齒扇構(gòu)成的傳動(dòng)副組成,如圖2-2所示。循環(huán)球式轉(zhuǎn)向器中一般有兩級傳動(dòng)副,第一級是螺桿螺母傳動(dòng)副,第二級一般采用齒條齒扇傳動(dòng)副。循環(huán)球式轉(zhuǎn)向器的正傳動(dòng)效率很高(可達(dá)),故操縱輕便,使用壽命長,工作平穩(wěn)、可靠。但其逆效率也很高,容易將路面沖擊力傳到轉(zhuǎn)向盤。不過,對于前軸載質(zhì)量不大而又經(jīng)常在平坦路面上行駛的汽車而言,這一缺點(diǎn)影響不大。因此,循環(huán)球式轉(zhuǎn)向器廣泛應(yīng)用于商用汽車上。
圖2-2 循環(huán)球式轉(zhuǎn)向器
3).蝸桿指銷式轉(zhuǎn)向器的傳動(dòng)副以轉(zhuǎn)向蝸桿為主動(dòng)件,其從動(dòng)件是裝在搖臂軸曲柄端部的指銷。轉(zhuǎn)向蝸桿傳動(dòng)時(shí),與之嚙合的指銷即繞搖臂軸軸線沿圓弧運(yùn)動(dòng),并帶動(dòng)搖臂軸轉(zhuǎn)動(dòng)。蝸桿指銷式轉(zhuǎn)向器的銷子若不能自傳,稱為固定銷式蝸桿指銷轉(zhuǎn)向器;銷子除隨同搖臂軸轉(zhuǎn)動(dòng)外,還能繞自身軸線轉(zhuǎn)動(dòng),稱為旋轉(zhuǎn)銷式轉(zhuǎn)向器。根據(jù)銷子數(shù)量的不同,又有單銷和雙銷之分。
固定銷蝸桿指銷式轉(zhuǎn)向器的結(jié)構(gòu)簡單、制造容易;但是因銷子不能自轉(zhuǎn),銷子的工作部位基本保持不變,所以磨損快、工作效率低。旋轉(zhuǎn)銷式轉(zhuǎn)向器的效率高、磨損慢,但結(jié)構(gòu)復(fù)雜。
要求搖臂軸有較大的轉(zhuǎn)角時(shí),應(yīng)該采用雙銷式結(jié)構(gòu)。雙銷式轉(zhuǎn)向器在直線行駛區(qū)域附近,兩個(gè)銷子同時(shí)工作,可降低銷子上的負(fù)荷,減少磨損。當(dāng)一個(gè)銷子脫離嚙合狀態(tài)時(shí),另一個(gè)銷子要承受全部作用力,而恰恰在此位置,作用力達(dá)到最大值,所以設(shè)計(jì)時(shí)要注意核算其強(qiáng)度。雙銷與單銷蝸桿指銷式轉(zhuǎn)向器比較,結(jié)構(gòu)復(fù)雜、尺寸和質(zhì)量大,并且對兩主銷間的位置精度、蝸桿上螺紋槽的形狀及尺寸精度等要求高。此外,傳動(dòng)比的變化特性和傳動(dòng)間隙特性受限制。
蝸桿指銷式轉(zhuǎn)向器應(yīng)用比較少。
4).蝸桿滾輪式轉(zhuǎn)向器由蝸桿和滾輪嚙合而構(gòu)成。其主要優(yōu)點(diǎn)是:結(jié)構(gòu)簡單;制造容易;因?yàn)闈L輪的齒面和蝸桿上的螺紋呈面接觸,所以有比較高的強(qiáng)度,工作可靠,磨損小,壽命長;逆效率低。
蝸桿滾輪式轉(zhuǎn)向器的主要缺點(diǎn)是:正效率低;工作齒面磨損以后,調(diào)整嚙合間隙比較困難;轉(zhuǎn)向器的傳動(dòng)比不能變化。
這種轉(zhuǎn)向器曾經(jīng)在汽車上廣泛使用過,但是現(xiàn)在已經(jīng)淘汰。
考慮到本次設(shè)計(jì)的是輕型載貨汽車的轉(zhuǎn)向器。所以選擇齒輪齒條式轉(zhuǎn)向器比較合適。
2.4 對轉(zhuǎn)向器的要求
1).提供準(zhǔn)確而輕便的轉(zhuǎn)向控制,同時(shí)轉(zhuǎn)向盤的轉(zhuǎn)角范圍不允許過大。這要求轉(zhuǎn)向器的自由行程(由傳動(dòng)零件之間的間隙引起)盡可能小,傳動(dòng)比適當(dāng),駕駛員主動(dòng)轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí)的機(jī)械效率(正效率)高,可能還需要?jiǎng)恿χΑ?
2).使地面對前輪的擾動(dòng)盡可能少地被傳到轉(zhuǎn)向盤上,同時(shí)還要讓駕駛員能夠感覺得到路面狀況(粗糙程度、附著力的大小等)的變化。這要求在前輪因受到地面干擾而試圖轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí)轉(zhuǎn)向器的機(jī)械效率適當(dāng)?shù)氐?,即逆效率適當(dāng)?shù)氐汀?
3).不能妨礙汽車完成轉(zhuǎn)向后、返回直線行駛狀態(tài)時(shí)的前輪自動(dòng)回正,這又要求轉(zhuǎn)向器的逆效率適當(dāng)?shù)馗摺?
4).停車(車速為零)轉(zhuǎn)向時(shí)駕駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤的力(轉(zhuǎn)向力)應(yīng)該被減小到最低限度。
5).使汽車具有良好的高速操縱穩(wěn)定性。這一般要求轉(zhuǎn)向器的自由行程、摩擦盡可能小,有適當(dāng)?shù)膫鲃?dòng)比和動(dòng)力助力(在采用動(dòng)力助力的情況下。)
2.5 轉(zhuǎn)向系的主要性能參數(shù)介紹
2.5.1 轉(zhuǎn)向器傳動(dòng)效率
轉(zhuǎn)向器的輸出功率與輸入功率之比稱為轉(zhuǎn)向器傳動(dòng)效率。在功率由轉(zhuǎn)向軸輸入、由轉(zhuǎn)向搖臂輸出的情況下求得的傳動(dòng)效率稱為正效率;而傳動(dòng)方向與上述相反時(shí)求得的效率,則稱為逆效率。逆效率很高的轉(zhuǎn)向器很容易將經(jīng)轉(zhuǎn)向機(jī)構(gòu)傳來的路面反力傳到轉(zhuǎn)向盤上,故稱為可逆式轉(zhuǎn)向器??赡媸睫D(zhuǎn)向器有利于汽車轉(zhuǎn)向結(jié)束后轉(zhuǎn)向輪和轉(zhuǎn)向盤的自動(dòng)回正,但也能將壞路面對車輪的沖擊力傳到轉(zhuǎn)向盤,發(fā)生“打手”現(xiàn)象。
逆效率很低的轉(zhuǎn)向器稱為不可逆式轉(zhuǎn)向器。不平路面對轉(zhuǎn)向輪的沖擊載荷輸入到這種轉(zhuǎn)向器,即由其中各傳動(dòng)零件(主要是傳動(dòng)副)承受,而不會傳到轉(zhuǎn)向盤上。路面作用于轉(zhuǎn)向輪上的回正力矩同樣也不能傳到轉(zhuǎn)向盤上,使得駕駛員不能得到路面反饋信息,喪失“路感”,無法據(jù)此調(diào)節(jié)轉(zhuǎn)向力矩。
逆效率略高于不可逆式的轉(zhuǎn)向器稱為極限可逆式轉(zhuǎn)向器,其反向傳力性能介于可逆式和不可逆式之間,而接近于不可逆式。采用這種轉(zhuǎn)向器時(shí),駕駛員能有一定的路感,轉(zhuǎn)向輪自動(dòng)回正也是可實(shí)現(xiàn),而且只有在路面沖擊力很大時(shí),才能部分地傳到轉(zhuǎn)向盤。
轉(zhuǎn)向系的效率由轉(zhuǎn)向器的效率和轉(zhuǎn)向操縱機(jī)構(gòu)的效率決定,即
(2-1)
轉(zhuǎn)向器的效率又有正效率與逆效率之分。轉(zhuǎn)向搖臂軸輸出的功率()與轉(zhuǎn)向軸輸入功率之比,稱為轉(zhuǎn)向器的正效率,即
(2-2)
式中:-轉(zhuǎn)向器的摩擦功率。
反之,即轉(zhuǎn)向軸輸出的功率()與轉(zhuǎn)向搖臂軸輸入的功率之比,稱為轉(zhuǎn)向器的逆效率:
(2-3)
正效率愈大,轉(zhuǎn)動(dòng)轉(zhuǎn)向輪時(shí)的摩擦損失就愈小,轉(zhuǎn)向操縱就愈容易。轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)、結(jié)構(gòu)參數(shù)和制造質(zhì)量等是影響轉(zhuǎn)向器正效率的主要因素。循環(huán)球式轉(zhuǎn)向器的傳動(dòng)副為滾動(dòng)摩擦,摩擦損失小,其正效率可達(dá)85%;蝸桿指銷式和蝸桿滾輪式轉(zhuǎn)向器的傳動(dòng)副存在較大的滑動(dòng)摩擦,效率較低。對于蝸桿和螺桿類轉(zhuǎn)向器,如果忽略軸承和其他地方的摩擦損失而只考慮嚙合副的摩擦,則其正效率為
(2-4)
式中:為蝸桿或螺桿的螺線導(dǎo)程角;為摩擦角,;為摩擦系數(shù)。
逆效率表示轉(zhuǎn)向器的可逆性。根據(jù)逆效率值的大小,轉(zhuǎn)向器又可分為可逆式、極限可逆式與不可逆式三種。
如果忽略軸承和其他地方的摩擦損失而只考慮副的摩擦,則蝸桿和螺桿類轉(zhuǎn)向器的逆效率為
(2-5)
通常,由轉(zhuǎn)向盤至轉(zhuǎn)向輪的效率即轉(zhuǎn)向系的正效率的平均值為;當(dāng)向上述相反反向傳遞力時(shí)逆效率的平均值為。轉(zhuǎn)向操縱及傳動(dòng)機(jī)構(gòu)的效率用于評價(jià)在這些機(jī)構(gòu)中的摩擦損失,其中轉(zhuǎn)向輪輪向主銷等的摩擦損失約為轉(zhuǎn)向系總損失的,而拉桿球銷的摩擦損失約為轉(zhuǎn)向系總損失的。
2.5.2 轉(zhuǎn)向盤自由行程
單從轉(zhuǎn)向操縱的靈敏性而言,最好是轉(zhuǎn)向盤和轉(zhuǎn)向節(jié)的運(yùn)動(dòng)能同步開始并同步終止。然而,這在實(shí)際上是不可能的。因?yàn)樵谡麄€(gè)轉(zhuǎn)向系統(tǒng)中,各傳動(dòng)件之間都必然存在著裝配間隙,而且這些間隙將隨著零件的磨損而增大。在轉(zhuǎn)向盤傳動(dòng)過程的開始階段,駕駛員對轉(zhuǎn)向盤所施加的力矩很小,因?yàn)橹皇怯脕砜朔D(zhuǎn)向系統(tǒng)內(nèi)部的摩擦,使各傳動(dòng)件運(yùn)動(dòng)到其間的間隙完全消除,故可以認(rèn)為這一階段是轉(zhuǎn)向盤空轉(zhuǎn)階段。此后,才需要對轉(zhuǎn)向盤施加更大的轉(zhuǎn)向力矩,以克服經(jīng)車輪傳到轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩,從而實(shí)現(xiàn)使各轉(zhuǎn)向輪的偏轉(zhuǎn)。轉(zhuǎn)向盤在空轉(zhuǎn)階段中的角行程稱為轉(zhuǎn)向盤自由行程。轉(zhuǎn)向盤自由行程對于緩和路面沖擊及避免使駕駛員過度緊張是有利的,但不宜過大,以免影響靈敏性。一般說來,轉(zhuǎn)向盤從相應(yīng)于汽車直線行駛的中間位置向任一方向的自由行程最好不要超過。當(dāng)零件磨損嚴(yán)重到使轉(zhuǎn)向盤自由行程超過時(shí),必須進(jìn)行調(diào)整。
2.5.3 轉(zhuǎn)向器角傳動(dòng)比的變化規(guī)律
轉(zhuǎn)向器的角傳動(dòng)比是一個(gè)重要參數(shù),它影響著汽車的許多轉(zhuǎn)向性能。由于增大
傳動(dòng)比可以增大力傳動(dòng)比,因此轉(zhuǎn)向器的角傳動(dòng)比不僅對汽車轉(zhuǎn)向靈敏性和穩(wěn)定性有直接影響,而且也影響著汽車的操縱輕便性??梢钥闯觯恨D(zhuǎn)向輪的轉(zhuǎn)角與轉(zhuǎn)向器的角傳動(dòng)比成反比。增大會使在同一轉(zhuǎn)向盤轉(zhuǎn)角下的轉(zhuǎn)向輪轉(zhuǎn)角變小,使轉(zhuǎn)向操縱時(shí)間變長,汽車轉(zhuǎn)向靈敏度降低。因此轉(zhuǎn)向“輕便性”與“靈敏性”是產(chǎn)品設(shè)計(jì)中遇到的一對矛盾。采用可變角傳動(dòng)比的轉(zhuǎn)向器可協(xié)調(diào)對“輕便性”
和“靈敏性”的要求。而轉(zhuǎn)向器角傳動(dòng)比的變化規(guī)律又因?yàn)檗D(zhuǎn)向器的結(jié)構(gòu)形式和參數(shù)的不同而異。
2.5.4 轉(zhuǎn)向器的傳動(dòng)間隙
轉(zhuǎn)向器的傳動(dòng)間隙是指轉(zhuǎn)向器傳動(dòng)副之間的間隙。改間隙隨轉(zhuǎn)向盤轉(zhuǎn)角的改變而改變。通常將這種變化關(guān)系成為轉(zhuǎn)向器的傳動(dòng)間隙特性。研究改傳動(dòng)間隙的意義在于它對汽車直線行駛時(shí)的穩(wěn)定性和轉(zhuǎn)向器的壽命都有直接影響。
當(dāng)轉(zhuǎn)向盤處于中間位置即汽車作直線行駛時(shí),如果轉(zhuǎn)向器傳有傳動(dòng)間隙則將使轉(zhuǎn)向輪在該間隙范圍內(nèi)偏離直線行駛而失去穩(wěn)定性。這一要求應(yīng)該在汽車使用的全部時(shí)間內(nèi)得到保證。汽車多直行行駛,因此轉(zhuǎn)向器傳動(dòng)副在中間部位的磨損量大于其兩端。為了保證轉(zhuǎn)向器傳動(dòng)副摩擦最大的中間部位能通過調(diào)整來消除因磨損而形成的間隙,調(diào)整后當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí)又不致于使轉(zhuǎn)向器傳動(dòng)副在其他嚙合部位卡住,應(yīng)使傳動(dòng)間隙從中間部位到兩端逐漸增大,并在端部達(dá)到其最大值(礦量轉(zhuǎn)角約為),以利于對間隙的調(diào)整及提高轉(zhuǎn)向器的使用壽命。不同結(jié)構(gòu)的轉(zhuǎn)向器其傳動(dòng)間隙特性亦不同。
2.5.5 轉(zhuǎn)向系的剛度
轉(zhuǎn)向系的各零、部件尤其是一些桿件均具有一定的彈性,這就使得轉(zhuǎn)向輪的實(shí)際
轉(zhuǎn)角要比駕駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤并按轉(zhuǎn)向系角傳動(dòng)比換算至轉(zhuǎn)向輪的轉(zhuǎn)角要小,這樣就不會有不足轉(zhuǎn)向的趨勢。轉(zhuǎn)向系剛度對輪胎的側(cè)偏剛度影響也很大。如果令為不考慮轉(zhuǎn)向系剛度時(shí)的輪胎側(cè)偏剛度,而為考慮轉(zhuǎn)向系剛度時(shí)的輪胎側(cè)偏剛度(稱為等階剛度),則有如下關(guān)系:
(2-6)
式中:為整個(gè)轉(zhuǎn)向系的剛度;為拖后距(后傾拖距與輪胎拖距之和)。
由上式可見:當(dāng)值很大時(shí),,即前輪的側(cè)偏剛度近似為;當(dāng)值很小時(shí),前輪的側(cè)偏剛度為且。后者表明:轉(zhuǎn)向系剛度不足會使前輪的側(cè)偏剛度減小,并導(dǎo)致汽車不足轉(zhuǎn)向傾向的加劇,使汽車的轉(zhuǎn)向靈敏性變差。
2.5.6 轉(zhuǎn)向阻力矩
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強(qiáng)度。欲驗(yàn)算轉(zhuǎn)向系零件的強(qiáng)度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉(zhuǎn)向軸的負(fù)荷、路面阻力和輪胎氣壓等。為轉(zhuǎn)動(dòng)轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動(dòng)的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。
其計(jì)算公式如下:
2.5.7 傳動(dòng)比
從輪胎接地面中心作用在兩個(gè)轉(zhuǎn)向輪上的合力與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動(dòng)比。
轉(zhuǎn)向盤角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向系角傳動(dòng)比。
轉(zhuǎn)向盤角速度與搖臂軸角速度之比,稱為轉(zhuǎn)向器角傳動(dòng)比。此定義適用于除齒輪齒條式之外的轉(zhuǎn)向器。
輪胎與地面之間的轉(zhuǎn)向阻力和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩之間有如下關(guān)系
式中,a為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長線與支撐平面的交點(diǎn)至車輪中心平面與支承平面交線間的距離。
作用在轉(zhuǎn)向盤上的手力為
式中,為作用在轉(zhuǎn)向盤上的力矩;為轉(zhuǎn)向盤直徑。
可知,當(dāng)主銷偏移距a小時(shí),力傳動(dòng)比應(yīng)取大一些才能保持轉(zhuǎn)向輕便。通常乘用車的a值在0.4-0.6倍輪胎的胎面寬度尺寸范圍內(nèi)選取,而貨車的a值在40-60mm范圍內(nèi)選用。轉(zhuǎn)向盤直徑對輕便性有影響,選用尺寸小一些的轉(zhuǎn)向盤,雖然占用的空間少,但是轉(zhuǎn)向時(shí)需對轉(zhuǎn)向盤施加較大的力;而選用尺寸大些的轉(zhuǎn)向盤又會使駕駛員進(jìn)、出駕駛室時(shí)入座困難。
2.5.8 轉(zhuǎn)向梯形
轉(zhuǎn)向梯形有整體式和斷開式兩種。設(shè)計(jì)轉(zhuǎn)向梯形必須保證汽車轉(zhuǎn)彎時(shí),全部車輪
繞一個(gè)瞬時(shí)轉(zhuǎn)向中心行駛,使在不同圓周上運(yùn)動(dòng)的車輪,作無滑動(dòng)的純滾動(dòng)運(yùn)動(dòng)。同時(shí),為達(dá)到總體布置要求的最小轉(zhuǎn)彎直徑值,轉(zhuǎn)向車輪應(yīng)有足夠的轉(zhuǎn)角。
1).整體式轉(zhuǎn)向梯形
整體式轉(zhuǎn)向梯形是由轉(zhuǎn)向橫拉桿、轉(zhuǎn)向梯形臂和汽車前軸組成的。其中梯形臂呈收縮狀向后延伸。這種方案的優(yōu)點(diǎn)是結(jié)構(gòu)簡單,調(diào)整前束容易,制造成本低;主要缺點(diǎn)是一側(cè)轉(zhuǎn)向輪上、下跳動(dòng)時(shí),會影響另一側(cè)轉(zhuǎn)向輪。
當(dāng)汽車前懸架采用非獨(dú)立懸架時(shí),應(yīng)當(dāng)采用整體式轉(zhuǎn)向梯形。整體式轉(zhuǎn)向梯形的橫拉桿可位于前軸后或前軸前(稱為前置梯形)。對于發(fā)動(dòng)機(jī)位置低或前輪驅(qū)動(dòng)汽車,常用采用前置梯形。前置梯形的梯形臂必須向外側(cè)方向延伸,因而會與車輪或制動(dòng)底板發(fā)生干涉,所以在布置上有困難。為了保護(hù)橫拉桿免遭路面不平物的損壞,橫拉桿的位置應(yīng)盡可能布置的高一些,至少不低于前軸高度。
2).斷開時(shí)轉(zhuǎn)向梯形
轉(zhuǎn)向梯形的橫拉桿做成斷開式的,稱之為斷開式的轉(zhuǎn)向梯形。斷開式轉(zhuǎn)向梯形的主要優(yōu)點(diǎn)是它與前輪采用獨(dú)立懸架想配合,能夠保證一側(cè)車輪上、下跳動(dòng)時(shí),不會影響另外一側(cè)車輪。與整體式轉(zhuǎn)向梯形比較,由于其桿系、球頭增多,所以結(jié)構(gòu)復(fù)雜;制造成本高;并且調(diào)整前束比較困難。
本次畢業(yè)設(shè)計(jì)的設(shè)計(jì)的是齒輪齒條式轉(zhuǎn)向器整車性能參數(shù)如下。
車型:BJ121型輕型載貨汽車
驅(qū)動(dòng)方式:FR4×2
表2-1 整車性能參數(shù)
名稱
軸距
前輪/后輪輪距
最小轉(zhuǎn)彎半徑
滿載軸荷分配:前/后
數(shù)值
2750mm
1440/1440(mm)
6.9m
877/1643(kg)
名稱
前輪氣壓P
主銷偏移距a
轉(zhuǎn)向節(jié)臂長L
方向盤直徑
數(shù)值
200kpa
50mm
200mm
400mm
齒輪齒條式轉(zhuǎn)向器的傳動(dòng)效率高達(dá)90%;齒輪與齒條之間因磨損出現(xiàn)間隙后,利用裝在齒條背部、靠近主動(dòng)小齒輪處的壓緊力可以調(diào)節(jié)彈簧,能自動(dòng)消除齒間間隙,這不僅可以提高轉(zhuǎn)向系統(tǒng)的剛度,還可以防止工作時(shí)產(chǎn)生沖擊和噪聲;轉(zhuǎn)向器占用的體積??;沒有轉(zhuǎn)向搖臂和直拉桿,所以轉(zhuǎn)向輪轉(zhuǎn)角可以增大,制造成本低。目前它在微型轎車、輕型貨車上得到了廣泛的應(yīng)用。齒輪齒條式轉(zhuǎn)向器的主要缺點(diǎn)是:逆效率高(60%-70%),汽車在不平路面上行駛時(shí),發(fā)生在轉(zhuǎn)向輪與路面之間沖擊力的大部分能傳到方向盤上,稱為反沖。反沖現(xiàn)象會使駕駛員精神緊張,并難以準(zhǔn)確控制汽車行駛方向,方向盤突然轉(zhuǎn)動(dòng)會造成打手,同時(shí)對駕駛員造成傷害。
齒輪齒條轉(zhuǎn)向器的小齒輪靠徑向止推軸承或滾針軸承支撐在殼體上。齒條由帶有彈簧的齒條托座推向齒輪,在彈簧力的作用下使齒條與齒輪總是處于無間隙嚙合狀態(tài)。當(dāng)小齒輪轉(zhuǎn)動(dòng)時(shí),齒條在轉(zhuǎn)向器殼體內(nèi)產(chǎn)生軸向移動(dòng)。轉(zhuǎn)向拉桿的一端與轉(zhuǎn)向齒條固連,另一端與轉(zhuǎn)向節(jié)臂連接。在齒條移動(dòng)時(shí),將帶動(dòng)轉(zhuǎn)向拉桿及轉(zhuǎn)向節(jié)臂一起移動(dòng),這樣就使車輪偏轉(zhuǎn),完成汽車轉(zhuǎn)向工作。工作示意圖如圖2-1所示。
圖2-2 自動(dòng)消除間隙裝置
根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對前軸位置的不同,在汽車上有四種布置形式:轉(zhuǎn)向器位于前軸后方,后置梯形;轉(zhuǎn)向器位于前軸后方,前置梯形;轉(zhuǎn)向器位于前軸前方,后置梯形;轉(zhuǎn)向器位于前軸前方,前置梯形,見圖2-2a至圖2-2d。
圖2-3 齒輪齒條式轉(zhuǎn)向器的四種布置形式
本次設(shè)計(jì)采用轉(zhuǎn)向器位于前軸后方,后置梯形的方案。
根據(jù)使用車型及總布置需要的不同,齒輪齒條式轉(zhuǎn)向器的主要輸出形式有一下四種:中間輸入,兩端輸出、側(cè)面輸入,兩端輸出、側(cè)面輸入,中間輸出、側(cè)面輸入,
如圖2-3所示。
一端輸出,分別如圖2-3a至圖2-3d所示。
圖2-4 齒輪齒條式轉(zhuǎn)向器四種輸出形式
采用側(cè)面輸入,中間輸出方案時(shí),由圖2-4可見,與齒條固連的左、右拉桿延伸到接近汽車總想對稱平面附近。由于拉桿長度增加,車輪上、下跳動(dòng)時(shí)拉桿擺角減小,有利于減少車輪上、下跳動(dòng)時(shí)轉(zhuǎn)向系與懸架系的運(yùn)動(dòng)干涉。拉桿與齒條用螺栓固定連接,因此,兩拉桿與齒條同時(shí)向左或向右移動(dòng),為此在轉(zhuǎn)向器殼體上開有軸向的長槽,從而降低了它的強(qiáng)度。
圖2-5 齒條齒條式轉(zhuǎn)向器
采用兩端輸出方案時(shí),由于轉(zhuǎn)向拉桿長度受到限制,容易與懸架系統(tǒng)導(dǎo)向機(jī)構(gòu)產(chǎn)生運(yùn)動(dòng)干涉。但其結(jié)構(gòu)簡單,制造方便,且成本低等特點(diǎn),常用于小型車輛上。
采用側(cè)面輸入,一端輸出的齒輪齒條式轉(zhuǎn)向器,常用于平頭貨車上。
本次設(shè)計(jì)采用的是中間輸入,兩端輸出的形式。
齒條斷面形狀有圓形(圖2-1)、V形(圖2-5)和Y形(圖2-6)三種。圓形斷面齒條的制作工藝比較簡單。V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)約20%左右,故質(zhì)量?。晃挥邶X下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉(zhuǎn)動(dòng);Y形斷面齒條的齒寬可以做的寬一些,因而強(qiáng)度得到增加。在齒條與托座之間通常裝有堿性材料(如聚四氟乙烯)做的墊片,以減少滑動(dòng)摩擦。當(dāng)車輪跳動(dòng)、轉(zhuǎn)向或轉(zhuǎn)向器工作時(shí),如在齒條上作用有能使齒條旋轉(zhuǎn)的力矩時(shí),應(yīng)選用V形和Y形斷面齒條,用來防止因齒條旋轉(zhuǎn)而破壞齒條、齒輪的齒不能正確嚙合的情況出現(xiàn)。
圖2-6 圓形斷面 圖2-7 Y形斷面
本次設(shè)計(jì)選用圓形斷面。
綜合上訴,本次設(shè)計(jì)選用的是直齒輪,齒條斷面為圓形,采用中間輸入兩端輸出,與非獨(dú)立懸架配合使用。
3 轉(zhuǎn)向系統(tǒng)的計(jì)算
1).精確地計(jì)算出這些力是非常困難的。為此推薦用足夠精確的半經(jīng)驗(yàn)公式來計(jì)算汽車在瀝青或混凝土路面上的原地轉(zhuǎn)向阻力矩(N·m),即
(3-1)
式中:為輪胎和路面間的滑動(dòng)摩擦因數(shù),一般取0.7
為轉(zhuǎn)向軸負(fù)荷 ()
為輪胎氣壓()
則
2).
圖 3-1
(3-2)
式中:為汽車軸距
為最小轉(zhuǎn)彎半徑
則 查表得
(3-3)
式中:為汽車軸距
為最小轉(zhuǎn)彎半徑
為主銷中心距
則 查表得
轉(zhuǎn)向器角傳動(dòng)比 (3-4)
式中:為轉(zhuǎn)向盤轉(zhuǎn)角
為轉(zhuǎn)向輪轉(zhuǎn)角
則
3).作用在轉(zhuǎn)向盤上的手力為
(3-5)
式中:為轉(zhuǎn)向搖臂長
為轉(zhuǎn)向節(jié)臂長
為轉(zhuǎn)向盤直徑
為轉(zhuǎn)向器正效率,0.9
為轉(zhuǎn)向阻力阻力矩
為轉(zhuǎn)向器角傳動(dòng)比
由于齒輪齒條式轉(zhuǎn)向器無轉(zhuǎn)向搖臂和轉(zhuǎn)向節(jié)臂,故不代入數(shù)值。
則
4).從輪胎接地面中心作用在兩個(gè)輪向輪上的合力與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動(dòng)比,即
(3-6)
輪胎與地面之間的轉(zhuǎn)向阻力和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩之間有如下關(guān)系:
(3-7)
式中:a為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長線與支撐平面的交點(diǎn)至車輪中心平面與支撐平面交線的距離。
作用在轉(zhuǎn)向盤上的手力可用下式表示:
(3-8)
式中:為作用在轉(zhuǎn)向盤上的力矩;為轉(zhuǎn)向盤直徑。
將式(3-7)、式(3-8)代入式(3-6)后得到
(3-9)
如果忽略摩擦損失,根據(jù)能量守恒原理得
(3-10)
由式(3-9)和式(3-10)得
(3-11)
則
則
則
5).本次設(shè)計(jì)采用整體式轉(zhuǎn)向梯形機(jī)構(gòu),汽車前懸架采用非獨(dú)立式懸架。采用后置轉(zhuǎn)向梯形。
圖3-2 轉(zhuǎn)向系各角度
圖中:、分別為內(nèi)、外轉(zhuǎn)向車輪轉(zhuǎn)角;L為汽車軸距;M為兩主銷中心線延長線到地面交點(diǎn)之間的距離;AE為轉(zhuǎn)向節(jié)臂;為梯形底角。
則
則
計(jì)算轉(zhuǎn)向橫拉桿和齒條的總長:
4 齒輪齒條的設(shè)計(jì)
4.1 齒輪的設(shè)計(jì)
根據(jù)齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)要求:齒輪模數(shù)取值范圍多在2~3mm之間。主動(dòng)小齒輪齒數(shù)多數(shù)在5~7個(gè)齒范圍變化,壓力角取20°。
本次齒輪的材料選用20CrMnTi。熱處理方式為:表面滲碳淬火。
所以,法向壓力角取。法向模數(shù)mm。
分度圓直徑
齒頂高
齒根高
齒高
齒頂圓直徑
齒根圓直徑
齒寬
齒厚
4.2 齒條的設(shè)計(jì)
齒條選用45號鋼,調(diào)制處理。
因?yàn)橄嗷Ш淆X輪的基圓距離必須相等,即
齒輪法面基圓齒距為
齒條法面基圓齒距為
取齒條法向模數(shù)
則
齒條齒頂高
齒條齒根高
齒高
5 齒輪齒條的校核
5.1 齒輪彎曲疲勞強(qiáng)度計(jì)算
5.1.1 計(jì)算許用彎曲應(yīng)力
(5-1)
式中:為試驗(yàn)齒輪齒根的彎曲疲勞極限應(yīng)力;為試驗(yàn)齒輪的應(yīng)力修正系數(shù);為彎曲疲勞強(qiáng)度計(jì)算的壽命系數(shù);為彎曲疲勞強(qiáng)度計(jì)算的尺寸系數(shù);為彎曲強(qiáng)度的最小安全系數(shù)。
查《中國機(jī)械設(shè)計(jì)大典》得
計(jì)算應(yīng)力循環(huán)次數(shù),確定彎曲疲勞強(qiáng)度壽命系數(shù)
式中:是齒輪每轉(zhuǎn)一周,同一側(cè)齒面的嚙合次數(shù);n是齒輪轉(zhuǎn)速(r/min);t是齒輪的設(shè)計(jì)壽命(h)。
根據(jù)N查表得:
則
5.1.2 計(jì)算齒根彎曲強(qiáng)度并校核
(5-2)
式中:為載荷作用于齒頂時(shí)的復(fù)合齒形系數(shù);K為載荷系數(shù);為齒輪轉(zhuǎn)矩;為齒輪齒寬;為重合度系數(shù)。
1).
式中:為斷面重合度,對于直齒輪
根據(jù)查表得重合度系數(shù)
2).確定載荷系數(shù)K
式中:為使用系數(shù);為動(dòng)載系數(shù);彎曲強(qiáng)度計(jì)算的齒面載荷分布系數(shù);為彎曲強(qiáng)度計(jì)算的齒間載荷分配系數(shù)
查表得:;
[原動(dòng)機(jī)輕微沖擊,工作機(jī)輕微沖擊]
則
3).齒輪轉(zhuǎn)矩
則
所以齒根彎曲強(qiáng)度符合要求。
5.2 齒面接觸強(qiáng)度校核
5.2.1 計(jì)算許用接觸應(yīng)力
(5-3)
式中:為試驗(yàn)齒輪的接觸疲勞極限應(yīng)力;為接觸強(qiáng)度的最小安全系數(shù);為接觸疲勞強(qiáng)度計(jì)算的壽命系數(shù);為工作硬化系數(shù)。
查《中國機(jī)械設(shè)計(jì)大典》得:
則
5.2.2 計(jì)算齒面接觸強(qiáng)度并校核
(5-4)
式中:為材料彈性系數(shù);為重合度系數(shù);為齒數(shù)比。
查《中國機(jī)械設(shè)計(jì)大典》得:
因?yàn)辇X輪和齒條均為鋼制,所以
齒數(shù)比u=5
則
所以,齒面接觸強(qiáng)度符合要求。
5.3 驗(yàn)算齒輪模數(shù)
則
所以,所以
取優(yōu)先系列模數(shù)2.5mm,所以符合要求。
6 齒輪軸的設(shè)計(jì)
6.1 齒輪齒條傳動(dòng)受力分析
若略去齒面間的摩擦力,則作用于節(jié)點(diǎn)的法向力可分解為徑向力和分力,分力又可分解為圓周力和軸向力。
6.2 軸的強(qiáng)度校核
齒輪軸受力分析圖
圖 6-1 軸的受力圖
6.2.1 軸的支撐反力的算計(jì)
在垂直面上
在水平面上
計(jì)算彎矩
在水平面上,a-a剖面左側(cè)
a- a剖面右側(cè)
在垂直面上,a-a剖面左側(cè)
a- a剖面右側(cè)
合成彎矩:
a-a面左側(cè)
a- a面右側(cè)
畫出彎矩圖:
圖 6-2 彎矩圖
計(jì)算轉(zhuǎn)矩并畫出轉(zhuǎn)矩圖
轉(zhuǎn)矩:
圖 6-3 轉(zhuǎn)矩圖
6.2.2 判斷危險(xiǎn)剖面
顯然,a-a截面左側(cè)的合成彎矩最大、扭矩為,所以該截面左側(cè)或許為危險(xiǎn)剖面。
6.2.3 軸的彎扭合成強(qiáng)度校核
由于齒輪的基圓直徑為,數(shù)值比較小,齒輪和軸之間采用鍵連接,齒輪和軸的強(qiáng)度將被降低,所以將其設(shè)計(jì)成齒輪軸,由于主動(dòng)小齒輪采用材料制造并經(jīng)滲碳淬火,因此,軸的材料也選用材料制造并經(jīng)滲碳淬火。查《中國機(jī)械設(shè)計(jì)大典》得:材料的抗拉強(qiáng)度極限,屈服極限,彎曲疲勞極限,剪切疲勞極限
對稱循環(huán)疲勞極限:
,
脈動(dòng)循環(huán)疲勞極限:
等效系數(shù):
6.2.4 軸的疲勞強(qiáng)度安全系數(shù)的校核
截面的抗扭截面系數(shù)
查《中國機(jī)械設(shè)計(jì)大典》得;
絕對尺寸系數(shù):;軸經(jīng)磨削加工,查得質(zhì)量系數(shù)
則 彎曲應(yīng)力:
應(yīng)力幅:
平均應(yīng)力
切應(yīng)力
安全系數(shù)校核
此安全系數(shù)符合要求。
7 其他零件的設(shè)計(jì)選擇
7.1 彈簧的選擇
根據(jù)GB/T 2089-1994選擇代號為A的標(biāo)準(zhǔn)圓柱螺旋壓縮彈簧,材料選擇45號鋼。
總?cè)?shù) n=5
有效圈數(shù)
彈簧直徑 d=4
節(jié)距 t=6.63
彈簧中徑
彈簧外進(jìn)
彈簧內(nèi)徑
因?yàn)樗膶?shí)驗(yàn)載荷為,所以選擇此彈簧可行。
7.2 軸承的選擇
查《機(jī)械設(shè)計(jì)手冊大師》,選擇6202深溝球軸承,內(nèi)徑為15mm,外徑為35mm,寬
度為11mm。
選擇NA 4901滾針軸承,內(nèi)徑為12mm,外徑為24mm,寬度為13mm。
7.3 螺釘?shù)倪x擇
根據(jù)GB/T 5782-2000
選取螺紋規(guī)格d=M6 兩個(gè)
選取螺紋規(guī)格d=M12一個(gè)
材料為Q235
7.4 彈簧壓塊的設(shè)計(jì)
壓塊的設(shè)計(jì)如圖所示,材料選擇45號鋼
圖7-1 彈簧壓塊示意圖
7.5 齒條支撐的設(shè)計(jì)
齒條支撐的設(shè)計(jì)如圖所示,材料選擇45號鋼
圖7-2 齒條支撐示意圖
7.6 軸承壓塊的設(shè)計(jì)
軸承壓塊的設(shè)計(jì)尺寸如圖所示,材料選擇45號鋼
圖7-3 軸承壓塊示意圖
結(jié)束語
本次畢業(yè)設(shè)計(jì)主要設(shè)計(jì)了機(jī)械式齒輪齒條式轉(zhuǎn)向器。選用的中間輸入,兩端輸出的形式,與非獨(dú)立式懸架配合使用,齒輪的齒形為直齒輪,齒條的斷面形狀為圓形。齒輪齒條式轉(zhuǎn)向器結(jié)構(gòu)簡單、緊湊;轉(zhuǎn)向器質(zhì)量比較小,傳動(dòng)效率高,比較適合用于輕型載貨汽車上。本次設(shè)計(jì)還有很多不足之處,希望大家指正。
致 謝
通過本次畢業(yè)設(shè)計(jì)我把我大學(xué)所學(xué)的知識進(jìn)行了比較全面的運(yùn)用和對其相關(guān)知識的進(jìn)一步了解。
在本次畢業(yè)設(shè)計(jì)中,我系統(tǒng)的了解了關(guān)于汽車轉(zhuǎn)向系統(tǒng)的知識,讓我對其有了初步的了解和認(rèn)識。尤其是對齒輪齒條轉(zhuǎn)向器有了深刻的認(rèn)識。這次畢業(yè)設(shè)計(jì)是對大學(xué)四年學(xué)習(xí)的知識的一次總結(jié)。在畢業(yè)設(shè)計(jì)中,我遇到了很多困難,有時(shí)候甚至無法下手。在經(jīng)過自己看書和老師指點(diǎn)加上和同學(xué)之間的無相交流之后,一步一步的完成了畢業(yè)設(shè)計(jì)。
畢業(yè)設(shè)計(jì)雖然比較辛苦,但是對我有了很大的提高。主要表現(xiàn)在如下幾個(gè)方面:
1).通過這次別業(yè)設(shè)計(jì),我系統(tǒng)的復(fù)習(xí)了解的了大學(xué)所學(xué)的知識,查缺補(bǔ)漏,溫故知新,對自己的知識成面有了一個(gè)提高,進(jìn)一步完善了自己的知識結(jié)構(gòu)。
2).對自己使用軟件的能力有了一個(gè)很大的提高,對軟件的一些運(yùn)用更加熟練。
3).用于面對挑戰(zhàn)和困難,知道了交流的重要性。
4).利用理論理論知識設(shè)計(jì)東西,使自己對設(shè)計(jì)有了初步了了解,學(xué)會了這種設(shè)計(jì)模式。
轉(zhuǎn)眼間畢業(yè)設(shè)計(jì)已經(jīng)接近了尾聲,這段奮斗的時(shí)光對我來說是非常有意義的。以后想起這段時(shí)間一定是很難忘了,這是我們走向社會之前的一段磨練。
大學(xué)四年即將結(jié)束,畢業(yè)設(shè)計(jì)即將完成。在這里我非常感謝給我指導(dǎo)的老師。從開題到畢業(yè)設(shè)計(jì)結(jié)束,每當(dāng)我有不解之處,老師都會在百忙之中抽空見我們,給予我們指導(dǎo),毫不厭倦的解答我們的問題。我才得以一步一步的往下做,在此,我衷心感謝老師,在畢業(yè)設(shè)計(jì)這段時(shí)間給我的指導(dǎo)。
同時(shí)還非常感謝給我指點(diǎn)的各位同學(xué),在我有疑問的時(shí)候能給予我?guī)椭?。同時(shí)也感謝學(xué)校提供了一個(gè)非常好的環(huán)境和各種資料幫助我們做畢業(yè)設(shè)計(jì)。
大學(xué)四年即將結(jié)束,我在母校度過了非??鞓返拇髮W(xué)時(shí)光,也學(xué)到了很多知識,感謝各位老師給我的幫助。對于學(xué)校我無以回報(bào),只希望以后好好工作為學(xué)校爭光。
再次向他們表示我衷心的謝意。
參考文獻(xiàn)
[1] 陳家瑞.汽車構(gòu)造.第三版.下冊[M].北京:機(jī)械工業(yè)出版社,2009.2
[2] 過學(xué)迅,鄧亞東. 汽車設(shè)計(jì).[M].北京:人民交通出版社,2005.8
[3] 黃華梁,彭文生.機(jī)械設(shè)計(jì)基礎(chǔ).第四版.[M].北京:高等教育出版社,2007.5
[4] 余志生.汽車?yán)碚?第五版.[M]北京:機(jī)械工業(yè)出版社,2009.3
[5] 王伯平.互換性與測量技術(shù)基礎(chǔ).第三版[M].北京:機(jī)械工業(yè)出版社,2008.12
[6] 黃茂林.機(jī)械原理.第二版[M].北京:機(jī)械工業(yè)出版社,2010.4
[7] 史新民.常用機(jī)構(gòu)與零件設(shè)計(jì).[M].北京:清華大學(xué)出版社,2010.12
[8] 中國機(jī)械設(shè)計(jì)大典編委會.中國機(jī)械設(shè)計(jì)大典.第3卷[M].南昌:江西科學(xué)技術(shù)出版社,2008.2
[9] 秦大同,謝里陽. 現(xiàn)代機(jī)械設(shè)計(jì)手冊[M].北京:化學(xué)工業(yè)出版社,2011.1
[10] 毛昕,張秀艷,黃英,肖平陽. 畫法幾何及機(jī)械制圖.第三版[M].北京:高等教育出版社,2002.1
[11] 曾東建.汽車制造工藝學(xué)[M].北京:機(jī)械工業(yè)出版社,2005.9
[12] 劉鴻文.材料力學(xué).第四版[M].北京:高等教育出版社,2004.1
[13] 陶亦亦,潘玉嫻.工程材料與機(jī)械制造基礎(chǔ)[M].北京:化學(xué)工業(yè)出版社,2006
[14] 王望予. 汽車設(shè)計(jì).第四版[M].北京:機(jī)械工業(yè)出版社,2008.8
[15] 劉冰.齒輪齒條轉(zhuǎn)向器的建模分析[J].上海工程技術(shù)大學(xué) 城市軌道交通學(xué)院
[16] 賀敬良,秦建旭.變速比轉(zhuǎn)向器齒扇副齒合理論研究[J] .北京信息科技大學(xué)機(jī)電工程學(xué)院
[17] 張敏中.齒輪-齒條式轉(zhuǎn)向器轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì)[J]
[18] 賈巨民,吳宏基,錢名海,唐天元,劉建.汽車循環(huán)球式轉(zhuǎn)向器側(cè)隙的研究1993年第10期
[19] 史建鵬.汽車轉(zhuǎn)向輪前束與車輪外傾角的設(shè)計(jì)匹配[J].東風(fēng)汽車公司技術(shù)中心
[20] 孫成玉,言夢林.汽車轉(zhuǎn)向梯形機(jī)構(gòu)最佳方案的設(shè)計(jì)[J].2002
[21] 齊淑范,何若天.轉(zhuǎn)向器實(shí)驗(yàn)用的抗彎曲型扭矩傳感器[J].1991
[22] 吳文江,杜彥良.電動(dòng)轉(zhuǎn)向系統(tǒng)助力性能研究[J].中國安全科學(xué)報(bào).2003.7.第13卷
[23] Zhao Wangzhong,Lin Yi,Wei Jianwei,Shi Guobiao. Control strategy of novel electric power Steering systen integrated with active front steering function.2011.6:1515-1520
[24] Li Huimin,Gao Yingjie,Gu Yanpeng,Yang Zhiyu,Dang Qi.Design of an Electro-hydraulic Steering System for Wheeled Hydraulic Excavator.2007.6