欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

《建筑力學(xué)》第三章平面一般力系.ppt

上傳人:xin****828 文檔編號(hào):15594250 上傳時(shí)間:2020-08-22 格式:PPT 頁(yè)數(shù):57 大?。?.33MB
收藏 版權(quán)申訴 舉報(bào) 下載
《建筑力學(xué)》第三章平面一般力系.ppt_第1頁(yè)
第1頁(yè) / 共57頁(yè)
《建筑力學(xué)》第三章平面一般力系.ppt_第2頁(yè)
第2頁(yè) / 共57頁(yè)
《建筑力學(xué)》第三章平面一般力系.ppt_第3頁(yè)
第3頁(yè) / 共57頁(yè)

下載文檔到電腦,查找使用更方便

14.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《《建筑力學(xué)》第三章平面一般力系.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《《建筑力學(xué)》第三章平面一般力系.ppt(57頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第三章 平面一般力系,,1.理解力矩和力偶的概念 2.會(huì)熟練 計(jì)算力對(duì)點(diǎn)之矩 3.掌握合力矩定理 4.牢固掌握力偶的性質(zhì) 5.平面力偶系合成的方法及平衡條件,力矩及力偶矩,教學(xué)目標(biāo):,,6、掌握力的平移定理; 7、了解平面任意力系簡(jiǎn)化的方法; 8、掌握平面任意力系簡(jiǎn)化的結(jié)果; 9、牢固掌握平面任意力系平衡方程,第一節(jié) 力矩的概念及合力矩定理,重 點(diǎn),1、力矩和力偶的概念 2、力對(duì)點(diǎn)之矩的計(jì)算,難 點(diǎn),1、力對(duì)點(diǎn)之矩的計(jì)算,,一、力對(duì)點(diǎn)之矩 1、概念 力可以使剛體移動(dòng),也可以使剛體轉(zhuǎn)動(dòng)。力對(duì)剛體的移動(dòng)效應(yīng)取決于力的三要素。力對(duì)剛體的轉(zhuǎn)動(dòng)效應(yīng)取決于什么呢?,力矩力和力臂的乘積,,正負(fù)號(hào)的規(guī)定:逆正

2、順負(fù) 力矩的性質(zhì) (1)力沿其作用線移動(dòng),不改變它對(duì)點(diǎn)的矩 (2)當(dāng)力的作用過(guò)矩心時(shí),力矩為零 (3)力對(duì)點(diǎn)之矩與矩心位置有關(guān)。,單位:Nm KNm,,,,d,F,2、合力矩定理平面匯交力系的合 力對(duì)平面內(nèi)任一點(diǎn)之矩等于該力系中 的各分力對(duì)該點(diǎn)之矩的代數(shù)和,MA(R)=MA(F1)+MA(F2) =F1h/3-F2b =Rcos300h/3-Rsin300b =146.4KN,直接法在已知力臂的情況下, 用定義式進(jìn)行計(jì)算。,MO(R)=MO(F1)+MO(F2)+ +MO(Fn)=MO(F),例:,間接法把力分解用合力矩定理 進(jìn)行計(jì)算,計(jì)算力矩的方法:,【例3-1】 圖3-3所示每lm

3、長(zhǎng)擋土墻所受土壓力的合力為,,方向如圖所示,求土壓力使墻傾覆的力矩。,【解】 土壓力,可使擋土墻繞A點(diǎn)傾覆,,,,故求土壓力,使墻傾覆的力矩,就是求,對(duì)A點(diǎn)的力矩。由已知尺寸求力臂d不方便,但如果將,分解為兩分力,和,,,,,,第二節(jié) 力偶及其基本性質(zhì),重 點(diǎn),力偶的基本性質(zhì)。,1、概念 力偶大小相等、方向相反、作用線不重合的兩個(gè)平行力稱(chēng)為力偶,力偶矩量度力偶對(duì)物體轉(zhuǎn)動(dòng)效應(yīng)的一個(gè)物理量,,Fd 逆正順負(fù),力偶的作用效果是引起物體的轉(zhuǎn)動(dòng),和力矩一樣,產(chǎn)生轉(zhuǎn)動(dòng)效應(yīng)。,一、力偶及其性質(zhì),M=,(1)力偶沒(méi)有合力,不能用一個(gè)力來(lái)代替,不能與一個(gè)力平衡,力偶不是平衡力系.,力偶在任一軸上投影的代數(shù)

4、和 為零,因此,力偶只能用力偶平衡, 力偶對(duì)剛體只起轉(zhuǎn)動(dòng)效應(yīng).,2、力偶的性質(zhì),(2)力偶對(duì)其作用面內(nèi)任一點(diǎn)之矩都等于力偶矩,與矩心 位置無(wú)關(guān),因此,只要保持m的大小和轉(zhuǎn)向不變,可以任意改變F和d的大小;只要保m的大小和轉(zhuǎn)向不變,力偶可以在其作用面內(nèi)任意移動(dòng)和轉(zhuǎn)動(dòng)。,C,MC(F、F)=Fd, 保持力偶矩不變,分別改變力和 力偶臂大小,其作用效果不變,, 只要保持力偶矩不變,力偶可在作用面內(nèi)任意轉(zhuǎn)動(dòng),其對(duì)剛體的作用效果不變,,,, 只要保持力偶矩不變,力偶可在作用面內(nèi)任意移動(dòng),其對(duì)剛體的作用效果不變,,力偶的三要素:,力偶的作用平面、轉(zhuǎn)向和力偶矩的大小,力矩是力使物體繞某點(diǎn)轉(zhuǎn)動(dòng)效應(yīng)的度量,力

5、偶矩是力偶使物體轉(zhuǎn)動(dòng)效應(yīng)的度量,二者相同點(diǎn): 單位統(tǒng)一,符號(hào)規(guī)定統(tǒng)一,二者主要區(qū)別:,力矩隨矩心位置的不同而變化。 力偶使物體轉(zhuǎn)動(dòng)的效果與所選矩心的位置無(wú)關(guān),它完全由力偶矩這個(gè)代數(shù)量唯一確定。,力偶矩完全可以描述一個(gè)力偶,而力對(duì)點(diǎn)的矩卻不能完全描述一個(gè)力。,力矩與力偶的比較,第三節(jié) 力的平移,,力的平移定理,重 點(diǎn),難 點(diǎn),力的平移定理應(yīng)用,力的平移定理:可以把作用在剛體上點(diǎn)A的力,【例3-2】 如圖3-8(a)所示,在柱子的A點(diǎn)受有吊車(chē)梁傳來(lái)的集中 力,平移到柱軸上O點(diǎn)時(shí)所應(yīng)附加的力偶矩,= 100kN。求將這力,,其中e=0.4m。,【解】 根據(jù)力的平移定理,力,由A點(diǎn)平移到O點(diǎn),必

6、須附加一力偶,,,負(fù)號(hào)表示該附加力偶的轉(zhuǎn)向是順時(shí)針的,第四節(jié) 平面力偶系的合成與平衡條件,平面力偶系平衡條件,重 點(diǎn),難 點(diǎn),平面力偶系平衡條件的靈活應(yīng)用,一、平面力偶系的合成,,,,,,分別將作用在點(diǎn)A和B的力合成,,,,設(shè)在同一平面內(nèi)有兩個(gè)力偶,和,它們的力偶臂各為d1和d2,這兩個(gè)力偶的矩分別為M1和M2,,求它們的合成結(jié)果,解:,,合力矩:,二平面力偶系的平衡條件 由合成結(jié)果可知,力偶系平衡時(shí),其合力偶的矩等于零。因此,平面力偶系平衡的必要和充分條件是:所有各力偶矩的代數(shù)和等于零,即,,【例題3-3】 如圖3-10(a)所示的簡(jiǎn)支梁AB,受一力偶的作用。 已知力偶,,梁長(zhǎng),,梁的自重不

7、計(jì)。,求梁A、B支座處的反力。,【解】 取梁AB為研究對(duì)象,梁AB上作用一集中力偶M且保持平衡,由于力偶只能用力偶來(lái)平衡,則A、B處的支座反力必形成一對(duì)與已知力偶M反向的力偶,又B處的支座反力垂直于支持面,要形成與已知力偶M反向的 力偶,B處的支座反力,方向只能斜向上,A處的支座反力,的方向斜向下,作用線與,平行,且有,由平衡條件,,得:,,,解之得:,,(方向如圖所示),第五節(jié) 平面一般力系的簡(jiǎn)化與平衡條件,重 點(diǎn),1、平面任意力系簡(jiǎn)化的結(jié)果; 2、平面任意力系平衡方程的形式。,難 點(diǎn),1、平面任意力系簡(jiǎn)化的結(jié)果。 2、平面任意力系簡(jiǎn)化的平衡方程,概述 平面任意力系是指各力的作用線在同一平面

8、內(nèi)不完全匯交于一點(diǎn)也不完全相互平行的力系,也稱(chēng)為平面一般力系,一. 平面任意力系向作用面內(nèi)一點(diǎn)簡(jiǎn)化,=,=,平面任意力系,R=F=F,M0=M0=M0(F),1、平面任意力系向O點(diǎn)簡(jiǎn)化的結(jié)果:,合力 R 原力系的主矢,通過(guò)O點(diǎn)。,合力偶矩 M0 原力系對(duì)于O點(diǎn)的主矩,結(jié)論:平面一般力系向其作用平面內(nèi)任一點(diǎn)簡(jiǎn)化,得到一個(gè)力和一個(gè)力偶。這個(gè)力稱(chēng)為原力系的主矢,作用于簡(jiǎn)化中心,等于原力系各力的矢量和;這個(gè)力偶的力偶矩稱(chēng)為原力系對(duì)簡(jiǎn)化中心的主矩。等于原力系中各力對(duì)簡(jiǎn)化中心之矩之和. 注意:主矢與簡(jiǎn)化中心位置無(wú)關(guān),主矩則有關(guān)。因此說(shuō)到力系的主矩時(shí),必須指出是力系對(duì)于哪一點(diǎn)的主矩。,,主矢、主矩共同作

9、用等效于原力系,,,,,,M0=M0=M0(F1)+M0(F2)+M0(Fn)=M0(F),主矢的解析表達(dá)法,同理:,2、對(duì)簡(jiǎn)化結(jié)果進(jìn)行討論 (1)平面任意力系簡(jiǎn)化結(jié)果是一個(gè)力偶的情形 R=0, M00 此時(shí)原力系只與一個(gè)力偶等效,這個(gè)力偶就是原力系的合力偶 (2)平面住意力系簡(jiǎn)化結(jié)果是一個(gè)力的情形 R0, M0=0 此時(shí)原力系只與一個(gè)力等效,這個(gè)力就是原力系的合力 R0 , M00 由力的等效平移的逆過(guò)程可知,這個(gè)力和力偶可以合成為一個(gè)合力,情況 向O點(diǎn)簡(jiǎn)化的結(jié)果 力系簡(jiǎn)化的最終結(jié)果 分類(lèi) 主矢R 主矩MO (與簡(jiǎn)化中心無(wú)關(guān)),,,,,,,,,3 R0 MO=0 合力R=R,作

10、用線過(guò)O點(diǎn)。,2 R=0 MO0 一個(gè)合力偶,M=MO。,1 R=0 MO=0 平衡狀態(tài)(力系對(duì)物體的移動(dòng) 和轉(zhuǎn)動(dòng)作用效果均為零)。,4 R0 MO0 一個(gè)合力,其大小為 R=R, 作用線到O點(diǎn)的距離為h=MO/R R在O點(diǎn)哪一邊,由MO符號(hào)決定,,,,,,平面力系簡(jiǎn)化的最終結(jié)果,只有三種可能:一個(gè)力;一個(gè)力偶;或?yàn)槠胶饬ο怠?(3)、平面任意力系平衡的情形 R=0 ,M0=0 則原力系是平衡力系,這種情形將在下一節(jié)中討論,內(nèi)容平面一般力系的 合力對(duì)平面內(nèi)任一點(diǎn)之 矩等于力系中各力對(duì)該 點(diǎn)之矩的代數(shù)和

11、,二、平面任意力系的合力矩定理,,,,,,,,,,例題3-4】將圖3-14(a)所示平面一般力系向O點(diǎn)簡(jiǎn)化,求其所得的主矢及主矩和力系合力的大小、方向及合力與O點(diǎn)的距離d,并在圖上畫(huà)出合力之作用線。圖中方格每格邊長(zhǎng)為5mm,,【解】 (1)向O點(diǎn)簡(jiǎn)化各力在x軸上的投影為:,,,,各力在x軸上的投影為:,,,,主矢的大小為,,,,,,主矢與x軸的夾角為,主矩的大小為,,,,(2)力系的合力 力系的合力大小與主矢的大小相等,方向與主矢平行。各力的 作用點(diǎn)到O點(diǎn)的距離為,,平面任意力系平衡的必要和充分條件是:力系的主矢和力系對(duì)任一點(diǎn)的主矩都等于零。即:R=0 M0=0,,M0=M0=M0(F),2、

12、平衡方程,得:,平衡方程的基本形式,稱(chēng)為平面任意力系基本形式的平衡方程。因方程中僅含有一個(gè)力矩方程,故又稱(chēng)為一矩式平衡方程。它表明平面任意力系平衡的必要和充分條件為:力系中所有各力在力系作用面內(nèi)兩個(gè)坐標(biāo)軸中每一軸上的投影的代數(shù)和等于零;力系中所有各力對(duì)于作用面內(nèi)任一點(diǎn)的力矩的代數(shù)和等于零。,三、平面任意力系平衡條件及平衡方程,由 R=,1、平衡條件,平面任意力系的平衡方程,除了這種基本形式以外,還有如下兩種形式 。 二力矩式:FX=0 MA=0 條件:A、B連線不能垂直于X軸 MB=0 三力矩式: MA=0 MB=0 條件:A、B、C不能在一條直線

13、上 MC=0 無(wú)論哪種形式的平衡方程,都只有三個(gè)獨(dú)立的方程,所以,平面任意力系的平衡方程只能求解三未知量。,,,用平衡方程求解平衡問(wèn)題的步驟: 1、選研究對(duì)象,并作其受力圖 2、列平衡方程 3、解方程 4、校核 用平衡方程求解平衡問(wèn)題技巧: 1、X、Y軸盡量建立在與多個(gè)未知力平行或垂直的方向上; 2、列力矩式時(shí),矩心選在未知力的交點(diǎn)上; 3、盡量不要求解聯(lián)立方程組;使得一個(gè)方程只有一個(gè)未知量,【例題3-5】 梁AB只在一端是固定端支座,在其他地方不存在任何約束,這樣的梁稱(chēng)為懸臂梁。梁AB承受荷載作用,如圖3-15(a)所示。已知,,,,梁的自重不計(jì),,求支座A處的反力。,【解】 (

14、1)取梁AB為研究對(duì)象,作受力圖如圖b所示。,(2)梁上的均布荷載可先合成為一個(gè)集中力,,其作用點(diǎn)在AC端的中點(diǎn)處,方向豎直向下,如圖c所示。,(3)設(shè)坐標(biāo)系,如圖3-15(c)所示,梁AB在荷載作用下保持平衡,由平衡條件得,a,b,c,,,,,,,,,,(方向向左),(方向向上),,,,,,(轉(zhuǎn)向?yàn)槟鏁r(shí)針?lè)较颍?,校核:,【例題3-6】 簡(jiǎn)支梁AB承受荷載作用,如圖3-16(a)所示。已知梁的自重為,,作用在梁的中點(diǎn)C處,在梁的AC段作用有,均布荷載q,在梁的BC段上受力偶作用,力偶矩,,求A、B處的支座反力。,【解】 (1)取梁AB為研究對(duì)象,作受力圖如圖b所示。 (2)梁AB在荷載作用下

15、保持平衡,由平衡條件得:,,,,,,,,,,解之得,,,,,a,b,,(3)校核:,【例題3-7】 外伸梁AB受荷載作用如圖a所示。已知均布荷載,,力偶矩,,集中力,,試求A、B處的支座反力。,【解】 (1)取梁AB為研究對(duì)象,作受力圖,如圖(b)所示。,(2)梁AB在荷載作用下保持平衡,由平衡條件得:,,,,,,,,a,b,,,:,,解之得,(方向向上),,(方向向下),(3)校核,【例題3-8】如圖a所示所示剛架(桿件都是由直桿組成,且桿件之間的結(jié)點(diǎn)不全為鉸結(jié)點(diǎn)的結(jié)構(gòu)稱(chēng)為剛架)ABCD,承受線均布荷載q和集中力,作用,試求A、B處的支座反力。,【解】(1)取剛架ABCD為研究對(duì)象,作受力圖

16、如圖b所示。 (2) 剛架ABCD在荷載作用下保持平衡,由平衡條件得:,,,,,,,,,,解之得,(方向向左),,(方向向上),,(方向向上),,(3)校核:,,第六節(jié) 平面平行力系的平衡條件,平面平行力系的平衡方程,注:力系不平行y軸(或x軸),第七節(jié) 物體系統(tǒng)的平衡問(wèn)題,一、物系平衡問(wèn)題,物體系統(tǒng)(簡(jiǎn)稱(chēng)物系):由多個(gè)物體通過(guò)約束而組合在一起的結(jié)構(gòu)(或機(jī)構(gòu))。,物體系統(tǒng)平衡時(shí),組成物系的每一個(gè)構(gòu)件也必為平衡狀態(tài),在一般情況下,只單獨(dú)以整體或只以系統(tǒng)內(nèi)的某一部分為研究對(duì)象,都不能求出全部的未知量。在此情況下,一般是選取多個(gè)研究對(duì)象,逐步求解。,求解物體系統(tǒng)的平衡問(wèn)題,就是計(jì)算出物體系統(tǒng)的內(nèi)、外

17、約束反力。解決問(wèn)題的關(guān)鍵在于恰當(dāng)?shù)剡x取研究對(duì)象,一般有兩種選取的方法: 1.先取整個(gè)物體系統(tǒng)作為研究對(duì)象,求得某些未知量;再取其中某部分物體(一個(gè)物體或幾個(gè)物體的組合)作為研究對(duì)象,求出其他未知量。 2.先取某部分物體作為研究對(duì)象,再取其他部分物體或整體作為研究對(duì)象,逐步求得所有的未知量。,,,,,【例題3-9】 組合梁受荷載如圖3-22(a)所示。已知,,求A、B、D處的支座反力。,【解】 組合梁由兩段AC、CD在C處用鉸連接,在A、C、D三處各有三個(gè)支座約,(1)取梁CD段為研究對(duì)象,如圖(b)所示,由平衡條件得,,,,,,,,,,,,(方向向上),,(方向向上),解之得,、,、,(2)取

18、梁AC段為研究對(duì)象,如圖3-22(c)所示,將,反向加載給梁AC段, 則作用在C處的,由平衡條件得,,,,,,,,,,,,,解之得,(方向向上),,(方向向上),(3)校核 取梁整體為研究對(duì)象,如圖d所示,由平衡條件得,,,,,【例題3-10】 鋼筋混凝土三鉸剛架受荷載作用,如圖a所示,已知,,求A、B處的支座反力。,【解】 三鉸拱由左、右兩半拱組成。分別分析整個(gè)三鉸拱和左、右兩半拱的受力,畫(huà)出它們的受力圖,如圖(b)、(c)、(d)所示,(1)取整個(gè)三鉸拱為研究對(duì)象圖(b),由平衡條件得,,,,,,,,,,解之得,,(方向向上),,(方向向上),,(2)取左半拱為研究對(duì)象,如圖(c)所示,由

19、平衡條件得,,,解之得,,(方向向右),,(方向向左),,(3)校核 取左半拱為研究對(duì)象,如圖d所示,由平衡條件得,體系統(tǒng)平衡問(wèn)題的解題特點(diǎn)歸納如下: 1.適當(dāng)選取研究對(duì)象 如整個(gè)系統(tǒng)的外約束反力未知量不超過(guò)三個(gè),或者雖然超過(guò)三個(gè)但不拆開(kāi)也能求出一部分未知量時(shí),可先選擇整個(gè)系統(tǒng)為研究對(duì)象。 如整個(gè)系統(tǒng)的外約束反力未知量超過(guò)三個(gè),必須拆開(kāi)才能求出全部未知量時(shí),通常先選擇受力情形最簡(jiǎn)單的某一部分(一個(gè)物體或幾個(gè)物體)作為研究對(duì)象,且最好這個(gè)研究對(duì)象所包含的未知量個(gè)數(shù)不超過(guò)此研究對(duì)象所受的力系的獨(dú)立平衡方程的數(shù)目。需要將系統(tǒng)拆開(kāi)時(shí),要在各個(gè)物體連接處拆開(kāi),而不應(yīng)將物體或桿件切斷,但對(duì)二力桿可以切斷。,,選取研究對(duì)象的具體方法是:先分析整個(gè)系統(tǒng)及系統(tǒng)內(nèi)各個(gè)物體的受力情況,畫(huà)出它們的受力圖,然后選取研究對(duì)象。 2.畫(huà)受力圖 畫(huà)出研究對(duì)象所受的全部外力,不畫(huà)研究對(duì)象中各物體之間相互作用的內(nèi)力。兩個(gè)物體間相互作用的力要符合作用與反作用關(guān)系。,

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!