東風(fēng)EQ1090E型貨車轉(zhuǎn)向橋總成的設(shè)計,東風(fēng),eq1090e,貨車,轉(zhuǎn)向,總成,設(shè)計
東風(fēng)EQ1090E型貨車轉(zhuǎn)向橋總成的設(shè)計
汽車轉(zhuǎn)向系統(tǒng)的發(fā)展歷史及未來技術(shù)趨勢
摘要:轉(zhuǎn)向系統(tǒng)是整車系統(tǒng)中必不可少的最基本的組成系統(tǒng),駕駛者通過方向盤來操縱和控制汽車的行進(jìn)方向,從而實現(xiàn)自己的駕駛意圖。一百多年來,汽車工業(yè)隨著機(jī)械和電子技術(shù)的發(fā)展而不斷前進(jìn)。到今天,汽車已經(jīng)不是單純機(jī)械意義上的汽車了,它是機(jī)械、電子、材料等學(xué)科的綜合產(chǎn)物。汽車轉(zhuǎn)向系統(tǒng)也隨著汽車工業(yè)的發(fā)展歷經(jīng)了長時間的演變。本文介紹了汽車轉(zhuǎn)向系統(tǒng)的歷史及未來的技術(shù)發(fā)展趨勢。
關(guān)鍵詞:轉(zhuǎn)向系統(tǒng);轉(zhuǎn)向器;液壓助力
傳統(tǒng)的汽車轉(zhuǎn)向系統(tǒng)是機(jī)械式的轉(zhuǎn)向系統(tǒng),汽車的轉(zhuǎn)向由駕駛員控制方向盤,通過轉(zhuǎn)向器等一系列機(jī)械轉(zhuǎn)向部件實現(xiàn)車輪的偏轉(zhuǎn),從而實現(xiàn)轉(zhuǎn)向。隨著上世紀(jì)五十年代起,液壓動力轉(zhuǎn)向系統(tǒng)在汽車上的應(yīng)用,標(biāo)志著轉(zhuǎn)向系統(tǒng)革命的開始。汽車轉(zhuǎn)向動力的來源由以前的人力轉(zhuǎn)變?yōu)槿肆右簤褐?。液壓助力系統(tǒng)HPS(Hydraulic Power Steering)是在機(jī)械式轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上增加了一個液壓系統(tǒng)而成。該液壓系統(tǒng)一般與發(fā)動機(jī)相連,當(dāng)發(fā)動機(jī)啟動的時候,一部分發(fā)動機(jī)能量提供汽車前進(jìn)的動能,另外一部分則為液壓系統(tǒng)提供動力。由于其工作可靠、技術(shù)成熟至今仍被廣泛應(yīng)用。這種助力轉(zhuǎn)向系統(tǒng)主要的特點是液壓力支持轉(zhuǎn)向運(yùn)動,減小駕駛者作用在方向盤上的力,改善了汽車轉(zhuǎn)向的輕便性和汽車運(yùn)行的穩(wěn)定性行的穩(wěn)定性。
但同時液壓助力系統(tǒng)也存在一些缺點:
在車輛設(shè)計制造完成后,車輛轉(zhuǎn)向的助力特性不能改變。直接后果是,當(dāng)助力特性偏向于低速助力時,汽車在低速段可以得到很好的助力,但是在高速段需要有較好路感的時候,由于助力特性不能調(diào)節(jié),使得駕駛者沒有較好的路感;當(dāng)助力特性偏向于高速助力時,在低速段得不到很好的助力效果;即使車輛不轉(zhuǎn)向,液壓系統(tǒng)也必須在發(fā)動機(jī)的帶動下工作。其結(jié)果是,消耗發(fā)動機(jī)能量,增加油耗 ;
存在液壓油泄漏問題,不僅對環(huán)境造成污染,而且容易使其他部件損壞;在低溫下,液壓系統(tǒng)的工作性能比較差。
近年來,隨著電子技術(shù)在汽車中的廣泛應(yīng)用,轉(zhuǎn)向系統(tǒng)中也愈來愈多地采用電子器件。轉(zhuǎn)向系統(tǒng)因此進(jìn)入了電子控制時代,相應(yīng)的就出現(xiàn)了電液助力轉(zhuǎn)向系統(tǒng)。電液助力轉(zhuǎn)向可以分為兩類 :電動液壓助力轉(zhuǎn)向系統(tǒng)EHPS(Electro-Hydraulic Power Steering)和電控液壓助力轉(zhuǎn)向ECHPS(Electronically Controlled Hydraulic Power Steering)。電動液壓助力轉(zhuǎn)向系統(tǒng)是在液壓助力系統(tǒng)基礎(chǔ)上發(fā)展起來的,與液壓助力系統(tǒng)不同的是,電動液壓助力系統(tǒng)中液壓系統(tǒng)的動力來源不是發(fā)動機(jī)而是電機(jī),由電機(jī)驅(qū)動液壓系統(tǒng),節(jié)省了發(fā)動機(jī)能量,減少了燃油消耗。電控液壓助力轉(zhuǎn)向也是在傳統(tǒng)液壓助力系統(tǒng)基礎(chǔ)上發(fā)展而來,它們的區(qū)別是,電控液壓助力轉(zhuǎn)向系統(tǒng)增加了電子控制裝置。電子控制裝置可根據(jù)方向盤轉(zhuǎn)向速率、車速等汽車運(yùn)行參數(shù),改變液壓系統(tǒng)助力油壓的大小,從而實現(xiàn)在不同車速下,助力特性的改變。而且電機(jī)驅(qū)動下的液壓系統(tǒng),在沒有轉(zhuǎn)向操作時,電機(jī)可以停止轉(zhuǎn)動,從而降低能耗。雖然電液助力轉(zhuǎn)向系統(tǒng)克服了液壓助力轉(zhuǎn)向的一些缺點。但是由于液壓系統(tǒng)的存在,它一樣存在液壓油泄漏的問題,而且電液助力轉(zhuǎn)向系統(tǒng)引入了驅(qū)動電機(jī),使得系統(tǒng)更加復(fù)雜,成本增加,可靠性下降。為了規(guī)避電液助力轉(zhuǎn)向系統(tǒng)的缺點,電動助力轉(zhuǎn)向系統(tǒng)EPS(Electric Power Steering)便應(yīng)時而生。它與前述各種助力轉(zhuǎn)向系統(tǒng)最大的區(qū)別在于,電動助力轉(zhuǎn)向系統(tǒng)中已經(jīng)沒有液壓系統(tǒng)了。原來由液壓系統(tǒng)產(chǎn)生的轉(zhuǎn)向助力由電動機(jī)來完成。電動助力式轉(zhuǎn)向系統(tǒng)一般由轉(zhuǎn)矩傳感器、微處理器、電動機(jī)等組成?;竟ぷ髟硎?:當(dāng)駕駛者轉(zhuǎn)動方向盤帶動轉(zhuǎn)向軸轉(zhuǎn)動時,安裝在轉(zhuǎn)動軸上的轉(zhuǎn)矩傳感器便將轉(zhuǎn)矩信號轉(zhuǎn)化為電信號并傳送至微處理器,微處理器根據(jù)轉(zhuǎn)矩信號并結(jié)合車速等其他車輛運(yùn)行參數(shù),按照事先在程序中設(shè)定的處理方法得出助力電動機(jī)助力的方向和助力的大小。自1988年日本鈴木公司首次在其Cervo車上裝備該助力轉(zhuǎn)向系統(tǒng)至今,電動助力轉(zhuǎn)向系統(tǒng)己經(jīng)得到人們的廣泛認(rèn)可。
助力轉(zhuǎn)向系統(tǒng)優(yōu)點主要體現(xiàn)在以下幾個方面:
電動助力轉(zhuǎn)向系統(tǒng)能在不同車速下提供不同的助力特性。在低速行駛時,增加轉(zhuǎn)向助力,使得轉(zhuǎn)向更加輕便 ;在高速行駛時減少轉(zhuǎn)向助力,甚至為了提高路感增加轉(zhuǎn)向阻尼。電動助力轉(zhuǎn)向系統(tǒng)只在轉(zhuǎn)向時電動機(jī)才工作,為轉(zhuǎn)向提供助力,因而能減少能耗。電動機(jī)由蓄電池供電,因此電動助力轉(zhuǎn)向系統(tǒng)可以在發(fā)動機(jī)不工作的情況下工作。電動助力轉(zhuǎn)向系統(tǒng)沒有液壓系統(tǒng),與液壓助力系統(tǒng)相比,裝配自動化程度更高。而且電動助力轉(zhuǎn)向系統(tǒng)可以通過改變微處理器中的助力程序算法,很容易實現(xiàn)助力特性的改變。
科學(xué)技術(shù)的發(fā)展總是日新月異的,傳統(tǒng)的轉(zhuǎn)向系均由轉(zhuǎn)向操縱機(jī)構(gòu)(方向盤)、轉(zhuǎn)向器、轉(zhuǎn)向傳動機(jī)構(gòu)三大部分組成。但是思想的火花總是能給人帶來驚喜!電子轉(zhuǎn)向系統(tǒng)SBW(Steering-By-Wire)的誕生顛覆了轉(zhuǎn)向系三大部分的舊有觀念,它用微控制器取代了轉(zhuǎn)向傳動機(jī)構(gòu),由三大部分變?yōu)榱藘刹糠帧k娮愚D(zhuǎn)向系統(tǒng)是汽車轉(zhuǎn)向系統(tǒng)最為先進(jìn)和前沿的技術(shù)之一。它主要由方向盤控制模塊、轉(zhuǎn)向執(zhí)行模塊以及微控制器三大模塊組成。方向盤控制模塊的主要功能是通過轉(zhuǎn)向力矩傳感器檢測駕駛員的轉(zhuǎn)向意圖,并將檢測到的信號(包括旋轉(zhuǎn)方向以及旋轉(zhuǎn)速度等)通過總線傳遞給微控制器,然后微控制器根據(jù)此信號,并結(jié)合車速信號反饋給方向盤控制模塊一個回正力矩,使得駕駛員能夠感受到路感。但是這種路感是虛擬的,是開發(fā)人員根據(jù)千萬次的試驗數(shù)據(jù)綜合起來,形成的“經(jīng)驗路感”,并以程序的形式固化在微控制器內(nèi)的。因此它與車速、轉(zhuǎn)向速率以及轉(zhuǎn)向力矩的大小存在著某種對應(yīng)關(guān)系。
轉(zhuǎn)向執(zhí)行機(jī)構(gòu)包括轉(zhuǎn)角傳感器、轉(zhuǎn)向電機(jī)、轉(zhuǎn)向電機(jī)控制器等組成。它的功能是根據(jù)微控制器的控制命令,驅(qū)動轉(zhuǎn)向執(zhí)行電機(jī)旋轉(zhuǎn)一定角度,完成轉(zhuǎn)向動作。同時轉(zhuǎn)角傳感器監(jiān)測轉(zhuǎn)角的大小,反饋給微控制器,形成一個閉環(huán)控制系統(tǒng),完成精確的轉(zhuǎn)向動作。微控制器是電子轉(zhuǎn)向系統(tǒng)的核心。它接收檢測信號,經(jīng)過處理發(fā)送相應(yīng)的控制信號。由于微控制器取代了轉(zhuǎn)向傳動機(jī)構(gòu),因此各部件之間的機(jī)械連接減少了,使轉(zhuǎn)向系統(tǒng)的響應(yīng)速度和響應(yīng)的準(zhǔn)確性得以提高。而且可以對轉(zhuǎn)向策略進(jìn)行軟件編程控制,實現(xiàn)傳動比的任意設(shè)置 ;可與其他設(shè)備,如ABS、自動導(dǎo)航設(shè)備進(jìn)行整合。傳動機(jī)構(gòu)的減少還帶來了更大的汽車內(nèi)部空間,給駕乘帶來更大的樂趣。而且轉(zhuǎn)向行為可以被軟件記錄下來,保存在EEPROM中,有助于以后進(jìn)一步完善轉(zhuǎn)向控制策略,甚至還可以為交通肇事提供證據(jù)。
汽車的安全問題一直是大眾關(guān)注的焦點。轉(zhuǎn)向系統(tǒng)與燈光系統(tǒng)的結(jié)合能給在夜間行駛的車輛帶來更好的安全性。如上頁左圖所示,傳統(tǒng)的車輛燈光系統(tǒng)是向車輛正前方直線照射的,如果行人在彎角處,駕駛者將很難發(fā)現(xiàn)彎角中的行人,極易造成交通事故。如果燈光系統(tǒng)與轉(zhuǎn)向系統(tǒng)結(jié)合起來,如上圖所示,當(dāng)駕駛者在向右打方向盤的時候,燈光隨著方向盤角度的變化而向右照射,彎道內(nèi)側(cè)照明更寬,照明范圍更大,那么在道路彎角中的行人將很容易被發(fā)現(xiàn)。目前該項燈光照明技術(shù)已經(jīng)在中檔的雪鐵龍凱旋、豐田凱美瑞上得到應(yīng)用。
目前電子轉(zhuǎn)向系統(tǒng)的可靠性和成本是阻撓其發(fā)展的主要因素。主要表現(xiàn)在如果微控制器出現(xiàn)問題,轉(zhuǎn)向系統(tǒng)將完全失靈,其不像電動助力轉(zhuǎn)向系統(tǒng)、電液助力轉(zhuǎn)向系統(tǒng),在電機(jī)或者液壓系統(tǒng)出現(xiàn)問題時,還可以以人力來控制汽車。電子轉(zhuǎn)向系統(tǒng)的微控制器出現(xiàn)故障的話,因為沒有機(jī)械系統(tǒng)能連接方向盤和轉(zhuǎn)向器,因此根本不可能控制汽車的轉(zhuǎn)向。但是盡管如此電子轉(zhuǎn)向系統(tǒng)依然是未來轉(zhuǎn)向系統(tǒng)的發(fā)展方向之一。
現(xiàn)代汽車轉(zhuǎn)向裝置的設(shè)計趨勢:
??? 1.1 適應(yīng)汽車高速行駛的需要
??? 從操縱輕便性、穩(wěn)定性及安全行駛的角度,汽車制造廣泛使用更先進(jìn)的工藝方法,使用變速比轉(zhuǎn)向器、高剛性轉(zhuǎn)向器?!白兯俦群透邉傂浴笔悄壳笆澜缟仙a(chǎn)的轉(zhuǎn)向器結(jié)構(gòu)的方向。
1.2 充分考慮安全性、輕便性
??? 隨著汽車車速的提高,駕駛員和乘客的安全非常重要,目前國內(nèi)外在許多汽車上已普遍增設(shè)能量吸收裝置,如防碰撞安全轉(zhuǎn)向柱、安全帶、安全氣囊等,并逐步推廣。從人類工程學(xué)的角度考慮操縱的輕便性,已逐步采用可調(diào)整的轉(zhuǎn)向管柱和動力轉(zhuǎn)向系統(tǒng)。
??? 1.3 低成本、低油耗、大批量專業(yè)化生產(chǎn)
??? 隨著國際經(jīng)濟(jì)形勢的惡化,石油危機(jī)造成經(jīng)濟(jì)衰退,汽車生產(chǎn)愈來愈重視經(jīng)濟(jì)性,因此,要設(shè)計低成本、低油耗的汽車和低成本、合理化生產(chǎn)線,盡量實現(xiàn)大批量專業(yè)化生產(chǎn)。對零部件生產(chǎn),特別是轉(zhuǎn)向器的生產(chǎn),更表現(xiàn)突出。
??? 1.4 汽車轉(zhuǎn)向器裝置的電腦化
??? 汽車的轉(zhuǎn)向器裝置,必定是以電腦化為唯一的發(fā)展途徑。
??? 2 現(xiàn)代汽車轉(zhuǎn)向裝置的發(fā)展趨勢
??? 2.1 現(xiàn)代汽車轉(zhuǎn)向裝置的使用動態(tài)
??? 隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有蝸桿肖式(WP型)、蝸桿滾輪式(WR型)、循環(huán)球式(BS型)、齒條齒輪式(RP型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。
??? 據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒條齒輪式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動機(jī)的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占 35%。
2.2 循環(huán)球式轉(zhuǎn)向器特點
??? 循環(huán)球式轉(zhuǎn)向器的特點是:效率高,操縱輕便,有一條平滑的操縱力特性曲線。布置方便。特別適合大、中型車輛和動力轉(zhuǎn)向系統(tǒng)配合使用;易于傳遞駕駛員操縱信號;逆效率高、回位好,與液壓助力裝置的動作配合得好。
??? 可以實現(xiàn)變速比的特性,滿足了操縱輕便性的要求。中間位置轉(zhuǎn)向力小、且經(jīng)常使用,要求轉(zhuǎn)向靈敏,因此希望中間位置附近速比小,以提高靈敏性。大角度轉(zhuǎn)向位置轉(zhuǎn)向阻力大,但使用次數(shù)少,因此希望大角度位置速比大一些,以減小轉(zhuǎn)向力。由于循環(huán)球式轉(zhuǎn)向器可實現(xiàn)變速比,應(yīng)用正日益廣泛。
??? 通過大量鋼球的滾動接觸來傳遞轉(zhuǎn)向力,具有較大的強(qiáng)度和較好的耐磨性。并且該轉(zhuǎn)向器可以被設(shè)計成具有等強(qiáng)度結(jié)構(gòu),這也是它應(yīng)用廣泛的原因之一。變速比結(jié)構(gòu)具有較高的剛度,特別適宜高速車輛車速的提高。高速車輛需要在高速時有較好的轉(zhuǎn)向穩(wěn)定性,必須保證轉(zhuǎn)向器具有較高的剛度。齒條齒扇副磨損后可以重新調(diào)整間隙,使之具有合適的轉(zhuǎn)向器傳動間隙,從而提高轉(zhuǎn)向器壽命,也是這種轉(zhuǎn)向器的優(yōu)點之一。我國的轉(zhuǎn)向器生產(chǎn),除早期投產(chǎn)的解放牌汽車用蝸桿#0;滾輪式轉(zhuǎn)向器,東風(fēng)汽車用蝸桿肖式轉(zhuǎn)向器之外,其它大部分車型都采用循環(huán)球式結(jié)構(gòu),并都具有一定的生產(chǎn)經(jīng)驗。目前解放、東風(fēng)也都在積極發(fā)展循環(huán)球式轉(zhuǎn)向器,并已在第二代換型車上普遍采用了循環(huán)球式轉(zhuǎn)向器。由此看出,我國的轉(zhuǎn)向器也在向大量生產(chǎn)循環(huán)球式轉(zhuǎn)向器發(fā)展。
??? 2.3 轉(zhuǎn)向器生產(chǎn)專業(yè)化
??? 循環(huán)球式轉(zhuǎn)向器在國外實現(xiàn)了專業(yè)化生產(chǎn),同時以專業(yè)廠為主、大力進(jìn)行試驗和研究,大大提高了產(chǎn)品的產(chǎn)量和質(zhì)量。在日本“精工”(NSK)公司的循環(huán)球式轉(zhuǎn)向器就以成本低、質(zhì)量好、產(chǎn)量大,逐步占領(lǐng)日本市場,并向全世界銷售它的產(chǎn)品。德國ZF公司也作為一個大型轉(zhuǎn)向器專業(yè)廠著稱于世。它從1948年開始生產(chǎn)ZF型轉(zhuǎn)向器,年產(chǎn)各種轉(zhuǎn)向器200多萬臺。還有一些比較大的轉(zhuǎn)向器生產(chǎn)廠,如美國德爾福公司SAGINAW分部;英國BURM#0;AN公司都是比較有名的專業(yè)廠家,都有很大的產(chǎn)量和銷售面。專業(yè)化生產(chǎn)已成為一種趨勢,只有走這條道路,才能使產(chǎn)品質(zhì)量高、產(chǎn)量大、成本低,在市場上有競爭力。
??? 2.4動力轉(zhuǎn)向是發(fā)展方向
??? 動力轉(zhuǎn)向系統(tǒng)的應(yīng)用日益廣泛,不僅在重型汽車上必須裝備,在高級轎車上應(yīng)用的也較多,在中型汽車上的應(yīng)用也逐漸推廣。主要是從減輕駕駛員疲勞,提高操縱輕便性和穩(wěn)定性出發(fā)。雖然帶來成本較高和結(jié)構(gòu)復(fù)雜等問題,但由于優(yōu)點明顯,還是得到很快的發(fā)展。 動力轉(zhuǎn)向有3種形式:整體式、半分置式及聯(lián)閥式動力轉(zhuǎn)向結(jié)構(gòu)。目前3種形式各有特點,發(fā)展較快,整體式多用于前橋負(fù)荷3~8t汽車。從發(fā)展趨勢上看,國外整體式轉(zhuǎn)向器發(fā)展較快,而整體式轉(zhuǎn)向器中轉(zhuǎn)閥結(jié)構(gòu)是目前發(fā)展的方向。
東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 0 畢業(yè)設(shè)計論文 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 學(xué) 生 姓 名 專 業(yè) 班 級 學(xué) 號 指 導(dǎo) 教 師 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 0 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 摘 要 本設(shè)計為載重汽車的轉(zhuǎn)向橋,此轉(zhuǎn)向橋需要適應(yīng)不同路況,不同速度下的穩(wěn)定行駛, 因此對前橋的要求也越來越高。在汽車設(shè)計、制造、因此應(yīng)該本著既能有足夠的承載能 力,又能實現(xiàn)耐用經(jīng)濟(jì)的思想進(jìn)行方案的選擇,為了降低生產(chǎn)成本,又在結(jié)構(gòu)上滿足要 求的情況下應(yīng)盡量簡單。 通過設(shè)計:(1)保證有足夠的強(qiáng)度:以保證可靠的承受車輪與車架之間的作用力。 (2)保證有足夠的剛度:以使車輪定位參數(shù)不變。 (3)保證轉(zhuǎn)向輪有正確的定位角度: 以使轉(zhuǎn)向輪運(yùn)動穩(wěn)定,操縱輕便并減輕輪胎的磨損。 (4)轉(zhuǎn)向橋的質(zhì)量應(yīng)盡可能?。阂?減少非簧上質(zhì)量,提高汽車行駛平順性。 通過分析工作原理設(shè)計轉(zhuǎn)向節(jié)、前軸、主銷等零件的尺寸,使各個零部件的強(qiáng)度滿 足校核,并運(yùn)用 caxa 等繪圖軟件繪制裝配圖和零件圖。 關(guān)鍵詞: 轉(zhuǎn)向橋;定位參數(shù);轉(zhuǎn)向節(jié);前軸;主銷 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 1 The design of the truck steering axle Abstract This design is Steering Axle for heavy trucks. The design is need to adapt to different road and under different speeds, so the stability of front axle higher requirements. In car design, manufacture, and should be based on both have enough carrying capacity, and can achieve durable economic thoughts options, in order to reduce the production cost, and meets the requirements in the structure of situations should as far as possible simple. By design: (1) To ensure adequate strength: in order to ensure affordable and reliable force between wheel and frame. By design: (1) To ensure adequate strength: in order to ensure affordable and reliable force between wheel and frame. (2) Ensure adequate rigidity: in order to change the wheel alignment parameters. (3)To ensure the correct positioning of steering wheel angle: to make the steering wheel movement and stability, manipulating light and reduce tire wear. (4) The steering axle of quality should be as small as possible: to reduce the non-sprung mass, improve vehicle ride comfort. Works by analyzing the design of steering knuckle, front axle, kingpin and other parts of the size, so that the strength of the various components to meet the check, and use other mapping software caxa assembly drawing and parts are drawing. Key words: steering axle; positional parameters; knuckle; front axle;kingpin 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 0 目錄 摘 要 ............................................................1 1.汽車轉(zhuǎn)向橋的概況 ...............................................3 1.1 汽車轉(zhuǎn)向橋目前狀況 ..........................................3 1.1.1 汽車前橋的分類 ...........................................3 1.1.2 前橋各參數(shù)對汽車穩(wěn)定性的作用與影響 .......................3 1.2 從動橋的結(jié)構(gòu)形式 ............................................7 1.2.1 從動橋總體結(jié)構(gòu) ..........................................7 1.2.2 載重汽車從動橋 ..........................................8 1.2.3 載重汽車從動橋 ..........................................9 1.2.4 設(shè)計意義 .................................................9 2.轉(zhuǎn)向橋的設(shè)計結(jié)構(gòu)參數(shù) ..........................................10 2.1 結(jié)構(gòu)參數(shù)選擇 ...............................................10 2.2 從動橋總體結(jié)構(gòu)選擇 .........................................10 2.3 確定前橋具體結(jié)構(gòu)型式 .......................................10 3.前軸設(shè)計 ......................................................11 3.1 前軸強(qiáng)度計算 ...............................................11 3.1.1 前軸受力分析簡圖 ........................................11 3.1.2 前軸載荷的計算(分三種工況分析 ) ........................12 3.2 前軸彎矩及扭矩計算 .........................................13 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 1 3.2.1 前軸斷面分析圖 ..........................................14 3.2.2 各個斷面彎扭矩計算(分三種工況分析) ....................15 3.3 斷面系數(shù)計算 ...............................................21 3.4 應(yīng)力計算 ...................................................23 3.5 前軸材料的許用應(yīng)力 .........................................23 4.轉(zhuǎn)向節(jié)設(shè)計 ....................................................23 4.1 截面系數(shù)計算 ...............................................24 4.2 彎矩計算 ...................................................24 4.3 應(yīng)力計算 ...................................................24 4.4 轉(zhuǎn)向節(jié)的材料、許用應(yīng)力及強(qiáng)度校核 ...........................25 5.主銷設(shè)計 ......................................................25 5.1 在汽車工況下計算 ...........................................26 5.2 在汽車側(cè)滑下計算 ...........................................27 6.轉(zhuǎn)向傳動機(jī)構(gòu)設(shè)計 ..............................................28 6.1 推力軸承和止推墊片計算 ....................................................28 6.2 桿件設(shè)計結(jié)果 ...............................................30 7.經(jīng)濟(jì)技術(shù)分析 ..................................................31 7.1 我國汽車車橋行業(yè)發(fā)展歷程 ...................................31 7.2 國內(nèi)汽車車橋產(chǎn)量和市場容量分析 .............................31 7.3 汽車車橋業(yè)發(fā)展特征及問題透視 ...............................31 7.4 車橋產(chǎn)品結(jié)構(gòu)解析轉(zhuǎn)向橋經(jīng)濟(jì)性分析 .........................31 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 2 7.5 提高轉(zhuǎn)向橋經(jīng)濟(jì)性 ...........................................32 8.結(jié) 論 ........................................................33 致 謝 .........................................................34 參 考 文 獻(xiàn) .....................................................35 附 錄 .........................................................36 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 3 第 1 章汽車轉(zhuǎn)向橋的概況 1.1 汽車轉(zhuǎn)向橋目前狀況 1.1.1 汽車前橋的分類 從動橋即非驅(qū)動橋,又稱從動車橋。它通過懸架與車架(或承載式車身)相 聯(lián),兩側(cè)安裝著從動車輪,用以在車架(或承載式車身)與車輪之間傳遞鉛垂力、 縱向力和橫向力。從動橋還要承受和傳遞制動力矩。 根據(jù)從動車輪能否轉(zhuǎn)向,從動橋分為轉(zhuǎn)向橋與非轉(zhuǎn)向橋。一般汽車多以前 橋為轉(zhuǎn)向橋。為提高操縱穩(wěn)定性和機(jī)動性,有些轎車采用全四輪轉(zhuǎn)向。多軸汽 車除前輪轉(zhuǎn)向外,根據(jù)對機(jī)動性的要求,有時采用兩根以上的轉(zhuǎn)向橋直至全輪 轉(zhuǎn)向。 一般載貨汽車采用前置發(fā)動機(jī)后橋驅(qū)動的布置形式,故其前橋為轉(zhuǎn)向從動 橋。轎車多采用前置發(fā)動機(jī)前橋驅(qū)動,越野汽車均為全輪驅(qū)動,故它們的前橋 既是轉(zhuǎn)向橋又是驅(qū)動橋,稱為轉(zhuǎn)向驅(qū)動橋。 從動橋按與其匹配的懸架結(jié)構(gòu)的不同,也可分為非斷開式與斷開式兩種。 與非獨(dú)立懸架相匹配的非斷開式從動橋是一根支承于左、右從動車輪上的剛性 整體橫梁,當(dāng)又是轉(zhuǎn)向橋時,則其兩端經(jīng)轉(zhuǎn)向主銷與轉(zhuǎn)向節(jié)相聯(lián)。斷開式從動 橋與獨(dú)立懸架相匹配。 非斷開式轉(zhuǎn)向從動橋主要由前梁、轉(zhuǎn)向節(jié)及轉(zhuǎn)向主銷組成。轉(zhuǎn)向節(jié)利用主 銷與前梁鉸接并經(jīng)一對輪轂軸承支承著車輪的輪轂,以達(dá)到車輪轉(zhuǎn)向的目的。 在左轉(zhuǎn)向節(jié)的上耳處安裝著轉(zhuǎn)向節(jié)臂,后者與轉(zhuǎn)向直拉桿相連;而在轉(zhuǎn)向節(jié)的 下耳處則裝著與轉(zhuǎn)向橫拉桿相連接的轉(zhuǎn)向梯形臂。有的將轉(zhuǎn)向節(jié)臂與梯形臂連 成一體并安裝在轉(zhuǎn)向節(jié)的下耳處以簡化結(jié)構(gòu)。轉(zhuǎn)向節(jié)的銷孔內(nèi)壓入帶有潤滑油 槽的青銅襯套以減小磨損。為使轉(zhuǎn)向輕便,在轉(zhuǎn)向節(jié)上耳與前梁拳部之間裝有 調(diào)整墊片以調(diào)整其間隙。帶有螺紋的楔形鎖銷將主銷固定在前梁拳部的孔內(nèi), 使之不能轉(zhuǎn)動。 1.1.2 前橋各參數(shù)對汽車穩(wěn)定性的作用與影響 為了保持汽車直線行駛的穩(wěn)定性、轉(zhuǎn)向輕便性及汽車轉(zhuǎn)向后使前輪具有自 動回正的性能,轉(zhuǎn)向橋的主銷在汽車的縱向和橫向平而內(nèi)都有一定傾角。在縱 向平面內(nèi),主銷上部向后傾斜一個 角,稱為主銷后傾角。在橫向平面內(nèi),主 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 4 銷上部向內(nèi)傾斜一個 角,稱為主銷內(nèi)傾角。 圖 1-1 主銷內(nèi)傾角 Figure 1-1 Kingpin Inclination 主銷內(nèi)傾也是為了保證汽車直線行駛的穩(wěn)定性并使轉(zhuǎn)向輕便。主銷內(nèi)傾使 主銷軸線與路面的交點至車輪中心平面的距離即主銷偏移距減小,從而可減小 轉(zhuǎn)向時需加在方向盤上的力,使轉(zhuǎn)向輕便,同時也可減小轉(zhuǎn)向輪傳到方向盤上 的沖擊力。主銷內(nèi)傾使前輪轉(zhuǎn)向時不僅有繞主銷的轉(zhuǎn)動,而且伴隨有車輪軸及 前橫梁向上的移動,而當(dāng)松開方向盤時,所儲存的上升位能使轉(zhuǎn)向輪自動回正, 保證汽車作直線行駛。內(nèi)傾角一般為 ;主銷偏移距一股為 3040mm。輕85 型客車、輕型貨車及裝有動力轉(zhuǎn)向的汽車可選擇較大的主銷內(nèi)傾角及后傾角, 以提高其轉(zhuǎn)向車輪的自動回正性能。但內(nèi)傾角也不宜過大,即主銷偏移距不宜 過小,否則在轉(zhuǎn)向過程中車輪繞主銷偏轉(zhuǎn)時,隨著滾動將伴隨著沿路面的滑動, 從而增加輪胎與路面間的摩擦阻力,使轉(zhuǎn)向變得很沉重。為了克服因左、右前 輪制動力不等而導(dǎo)致汽車制動時跑偏,近年來出現(xiàn)主銷偏移距為負(fù)值的汽車。 主銷后傾使主銷軸線與路面的交點位于輪胎接地中心之前,該距離稱為后 傾拖距。當(dāng)直線行駛的汽車的轉(zhuǎn)向輪偶然受到外力作用而稍有偏轉(zhuǎn)時,汽車就 偏離直線行駛而有所轉(zhuǎn)向,這時引起的離心力使路面對車輪作用著一阻礙其側(cè) 滑的側(cè)向反力,使車輪產(chǎn)生繞主銷旋轉(zhuǎn)的回正力矩,從而保證了汽車具有較好 的直線行駛穩(wěn)定性。此力矩稱穩(wěn)定力矩。穩(wěn)定力矩也不宜過大,否則在汽車轉(zhuǎn) 向時為了克服此穩(wěn)定力矩需在方向盤上施加更大的力,導(dǎo)致方向盤沉重。后傾 角通常在 以內(nèi)?,F(xiàn)代轎車采用低壓寬斷面斜交輪胎,具有較大的彈性回正力3 矩,故主銷后傾角就可以減小到接近于零,甚至為負(fù)值。但在采用子午線輪胎 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 5 時,由于輪胎的拖距較小,則需選用較大的后傾角。舉一個生活中的例子: 我 們在騎自行車拐彎的時候,會自然地將車子向所轉(zhuǎn)的方向傾斜,讓車輪與地面 有一個夾角,學(xué)過物理的人知道,這樣做是為了產(chǎn)生足夠的向心力。汽車也是 一樣,右側(cè)車輪在右轉(zhuǎn)彎的時候在主銷內(nèi)傾角和后傾角的共同作用下會向右側(cè) 傾倒,而左側(cè)車輪雖也有主銷內(nèi)傾角,卻不會向左側(cè)傾倒,因為還有主銷后傾 角,把它又拉了回來,甚至也能向右微微傾斜。不僅如此,兩側(cè)車輪的轉(zhuǎn)動還 使右側(cè)車身降低,左側(cè)車身抬高,整個車身也向右傾斜,于是產(chǎn)生了足夠的向 心力。 圖 1-2 車輪外傾角和主銷后傾角 Figure 1-2 camber and caster angle 前輪定位除上述主銷后傾角、主銷內(nèi)傾角外,還有車輪外傾角及前束,共 4 項參數(shù)。車輪外傾指轉(zhuǎn)向輪在安裝時,其輪胎中心平面不是垂直于地面,而 是向外傾斜一個角度 ,稱為車輪外傾角。此角約為 ,一般為 左5.101 右。它可以避免汽車重載時車輪產(chǎn)生負(fù)外傾即內(nèi)傾,同時也與拱形路而相適應(yīng)。 由于車輪外傾使輪胎接地點向內(nèi)縮,縮小了主銷偏移距,從而使轉(zhuǎn)向輕便并改 善了制動時的方向穩(wěn)定性。 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 6 圖 1-3 前束 Figure 1-3 toe 前束的作用是為了消除汽車在行駛中因車輪外傾導(dǎo)致的車輪前端向外張開 的不利影響(具有外傾角的車輪在滾動時猶如滾錐,因此當(dāng)汽車向前行駛時,左 右兩前輪的前端會向外張開),為此在車輪安裝時,可使汽車兩前輪的中心平面 不平行,且左右輪前面輪緣間的距離 A 小于后面輪緣間的距離 B,以使車輪在 每一瞬時的滾動方向是向著正前方。前束即(B-A),一般汽車約為 35mm,可 通過改變轉(zhuǎn)向橫拉桿的長度來調(diào)整。設(shè)定前束的名義值時,應(yīng)考慮轉(zhuǎn)向梯形中 的彈性和間隙等因素。 在汽車的設(shè)計、制造、裝配調(diào)整和使用中必須注意防止可能引起的轉(zhuǎn)向車 輪的擺振,它是指汽車行駛時轉(zhuǎn)向輪繞主銷不斷擺動的現(xiàn)象,它將破壞汽車的 正常行駛。轉(zhuǎn)向車輪的擺振有自激振動與受迫振動兩種類型。前者是由于輪胎 側(cè)向變形中的遲滯特性的影響,使系統(tǒng)在一個振動周期中路面作用于輪胎的力 對系統(tǒng)作正功,即外界對系統(tǒng)輸入能量。如果后者的值大于系統(tǒng)內(nèi)阻尼消耗的 能量,則系統(tǒng)將作增幅振動直至能量達(dá)到動平衡狀態(tài)。這時系統(tǒng)將在某一振幅 下持續(xù)振動,形成擺振。其振動頻率大致接近系統(tǒng)的固有頻率而與車輪轉(zhuǎn)速并 不一致,且會在較寬的車速范圍內(nèi)發(fā)生。通常在低速行駛時發(fā)生的擺振往往屬 于自攝振動型。當(dāng)轉(zhuǎn)向車輪及轉(zhuǎn)向系統(tǒng)受到周期性擾動的激勵,例如車輪失衡、 端面跳動、輪胎的幾何和機(jī)械特性不均勻以及運(yùn)動學(xué)上的干涉等,在車輪轉(zhuǎn)動 下都會構(gòu)成周期性的擾動。在擾動力周期性的持續(xù)作用下,便會發(fā)生受迫振動。 當(dāng)擾動的激勵頻率與系統(tǒng)的固有頻率一致時便發(fā)生共振。其特點是轉(zhuǎn)向輪擺振 頻率與車輪轉(zhuǎn)速一致,而且一般都有明顯的共振車速,共振范圍較窄(35km/h)。 通常在高速行駛時發(fā)生的擺振往往屬于受迫振動型。 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 7 轉(zhuǎn)向輪擺振的發(fā)生原因及影響因素復(fù)雜,既有結(jié)構(gòu)設(shè)計的原因和制造方面 的因素如車輪失衡、輪胎的機(jī)械特性、系統(tǒng)的剛度與阻尼、轉(zhuǎn)向輪的定位角 以及陀螺效應(yīng)的強(qiáng)弱等;又有裝配調(diào)整方面的影響,如前橋轉(zhuǎn)向系統(tǒng)各個環(huán)節(jié) 間的間隙(影響系統(tǒng)的剛度)和摩擦系數(shù)(影響阻尼)等。合理地選擇這些有關(guān)參 數(shù)、優(yōu)化它們之間的匹配,精心地制造和裝配調(diào)整,就能有效地控制前輪擺振 的發(fā)生。在設(shè)計中提高轉(zhuǎn)向器總成與轉(zhuǎn)向拉桿系統(tǒng)的剛度及懸架的縱向剛度, 提高輪胎的側(cè)向剛度,在轉(zhuǎn)向拉桿系中設(shè)置橫向減震器以增加阻尼等,都是控 制前輪擺振發(fā)生的一些有效措施。 1.2 從動橋的結(jié)構(gòu)形式 1.2.1 從動橋總體結(jié)構(gòu) 各種車型的非斷開式轉(zhuǎn)向從動橋的結(jié)構(gòu)型式基本相同。作為主要零件的前 梁是用中碳鋼或中碳合金鋼的,其兩端各有一呈拳形的加粗部分為安裝主銷的 前梁拳部;為提高其抗彎強(qiáng)度,其較長的中間部分采用工字形斷面并相對兩端 向下偏移一定距離,以降低發(fā)動機(jī)從而降低傳動系的安裝位置以及傳動軸萬向 節(jié)的夾角。為提高其抗扭強(qiáng)度,兩端與拳部相接的部分采用方形斷面,而靠近 兩端使拳部與中間部分相聯(lián)接的向下彎曲部分則采用兩種斷面逐漸過渡的形狀。 中間部分的兩側(cè)還要鍛造出鋼板彈簧支座的加寬文承面。有的汽車的轉(zhuǎn)向從動 橋的前梁采用組合式結(jié)構(gòu),即由其采用無縫鋼管的中間部分與采用模鍛成形的 兩端拳形部分組焊而成。這種組合式前梁適于批量不太大的生產(chǎn)并可省去大型 緞造設(shè)備。轉(zhuǎn)向節(jié)多用中碳合金鋼模級成整體式結(jié)構(gòu)。有些大型汽車的轉(zhuǎn)向節(jié), 由于其尺寸過大,也有采用組焊式結(jié)構(gòu)的,即其輪軸部分是經(jīng)壓配并焊接上去 的。 主銷的幾種結(jié)構(gòu)型式如下圖所示,其中比較常用的是(a),(b)兩種。 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 8 (a) (b) (c) (d) 圖 1-4 主銷結(jié)構(gòu)形式 FIG. 1-1 the kingpin structure (a)圓柱實心型 (b) 圓柱空心型 (c) 上,下端為直徑不等的圓柱,中間為錐體 的主銷 (d)下部圓柱比上部細(xì)的主銷 (a)Cylindrical solid model (b) cylindrical hollow (c) Ranging in diameter from top to bottom- side columns, the middle of the cone of the main sales (d) lower than the upper part of thin cylindrical kingpin 轉(zhuǎn)向節(jié)推力軸承承受作用于汽車前梁上的重力,為減小摩擦使轉(zhuǎn)向輕便可 采用滾動軸承,例如推力球軸承、推力圓錐滾子軸承或圓錐波子軸承等。也有 采用青銅止推墊片的。主銷上、下軸承承受較大的徑向力,多采用滑動軸承, 也有采用滾針軸承的結(jié)構(gòu)。后者的效率高,轉(zhuǎn)向阻力小,且可延長使用壽命。 1.2.2 載重汽車從動橋 本設(shè)計為載重汽車的轉(zhuǎn)向前橋,因此應(yīng)該本著既能有足夠的承載能力,又 能實現(xiàn)耐用經(jīng)濟(jì)的思想進(jìn)行方案的選擇,為了降低生產(chǎn)成本,又在結(jié)構(gòu)上滿足 要求的情況下應(yīng)盡量簡單。 轉(zhuǎn)向前橋有斷開式和非斷開式兩種。斷開式前橋與獨(dú)立懸架相配合,結(jié)構(gòu) 比較復(fù)雜但性能比較好,多用于轎車等以載人為主的高級車輛。非斷開式又稱 整體式,它與非獨(dú)立懸架配合。與斷開式前橋相比它的結(jié)構(gòu)簡單,經(jīng)濟(jì)性高, 強(qiáng)度大、安裝維修方便的優(yōu)點,這種形式在現(xiàn)在汽車上得到廣泛應(yīng)用。因此本 次設(shè)計就采用了非斷開式從動橋。 轉(zhuǎn)向從動橋的主要零件有前梁,轉(zhuǎn)向節(jié),主銷,注銷上下軸承及轉(zhuǎn)向節(jié)襯 套,轉(zhuǎn)向節(jié)推力軸承。前梁采用中間部分為整體鍛件與兩端拳部組焊的形式。 主銷采用結(jié)構(gòu)簡單的實心的圓柱形如上圖 a 所示。 另外為了保證汽車轉(zhuǎn)彎行駛時所有車輪能繞一個轉(zhuǎn)向瞬時轉(zhuǎn)向中心,在不 同的圓周上作無滑動的純滾動,本次設(shè)計有進(jìn)行了轉(zhuǎn)向梯形的優(yōu)化設(shè)計。本方 案轉(zhuǎn)向梯形布置在前軸之后,進(jìn)行梯形的最佳參數(shù)和強(qiáng)度計算。 目前國內(nèi)載重汽車前橋一般可以承受10噸左右的載重量,并且大部分都是 采用非斷開式轉(zhuǎn)向橋。像早期東風(fēng)汽車公司生產(chǎn)的EQ1090E型載重貨車,它采用 的是鋼材鍛造的并且斷面為工字型的前梁,采用非斷開式結(jié)構(gòu)。前梁的拳形部 分通過主銷相連轉(zhuǎn)向節(jié),轉(zhuǎn)向節(jié)通過軸承與輪轂相連。這種方式連接穩(wěn)定、可 靠,可以完成車輪的靈活轉(zhuǎn)向。 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 9 1.2.3 載重汽車從動橋 本文首先確定主要部件的結(jié)構(gòu)型式和主要設(shè)計參數(shù),然后參考類似轉(zhuǎn)向橋 的結(jié)構(gòu),確定出總體設(shè)計方案,最后對前梁、主銷、主銷上下軸承、轉(zhuǎn)向橋、 調(diào)整墊片,轉(zhuǎn)向節(jié)推力軸承等及輪轂等零件的尺寸進(jìn)行設(shè)計,對強(qiáng)度進(jìn)行校核 以及對主要軸承進(jìn)行了壽命校核。對前橋進(jìn)行力學(xué)模型的建立,將物理力學(xué)模 型轉(zhuǎn)化成數(shù)學(xué)模型(數(shù)學(xué)公式) 。 2.主要解決的問題: 對以往同類的轉(zhuǎn)向橋的資料進(jìn)行總結(jié)分析,得到一些新的觀點及思路,針對載 重車轉(zhuǎn)向橋的主要功用即對車身的支持作用、靈活轉(zhuǎn)向的作用。通過設(shè)計使前 橋更可靠、更靈活 1.2.4 設(shè)計意義: 采用傳統(tǒng)方法對載重汽車轉(zhuǎn)向橋進(jìn)行結(jié)構(gòu)尺寸設(shè)計,使轉(zhuǎn)向橋滿足如下的 設(shè)計要求: (1)保證有足夠的強(qiáng)度:以保證可靠的承受車輪與車架之間的作用力。 (2)保證有足夠的剛度:以使車輪定位參數(shù)不變。 (3)保證轉(zhuǎn)向輪正確的定位角度:使轉(zhuǎn)向輪運(yùn)動穩(wěn)定,操縱輕便并減輕輪胎磨 損。 (4)從動橋的質(zhì)量應(yīng)盡可能小:以減少非簧上質(zhì)量,提高汽車行駛平順性。 合理優(yōu)化前梁、轉(zhuǎn)向節(jié)、等零部件的結(jié)構(gòu),使各個部分零件能夠合理的配合, 以適應(yīng)復(fù)雜路況。盡可能降低整個橋身的質(zhì)量,從而減輕車的重量。并且對車 輪輪轂進(jìn)行配合設(shè)計,使其與轉(zhuǎn)向橋合理配合達(dá)到靈活轉(zhuǎn)向的目的 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 10 2.轉(zhuǎn)向橋的設(shè)計結(jié)構(gòu)參數(shù) 2.1 結(jié)構(gòu)參數(shù)選擇 轉(zhuǎn)向橋設(shè)計參數(shù)參照 CA1021 型號汽車前橋數(shù)據(jù)獲得,如表 2-1 所示 表 2-1 汽車總 質(zhì)量 Ga( N ) 前軸軸載 質(zhì)量 G1( N) 汽車質(zhì)心至 前軸中心線 距離 L1( mm) 汽車質(zhì)心至 后軸中心線 距離 L2(mm) 軸距 L( mm ) 汽車質(zhì) 心高度 hg(mm) 前鋼板 彈簧座 中心距 B(mm) 24250 11100 1800 1120 3025 540 720 主銷中 心距 B(mm ) 前輪距 B1(mm) 車輪滾動半 徑 rr(mm) 主銷內(nèi)傾角 主銷后 傾角 前輪外 傾角 a 前輪前 束 1330 1460 314 6 2 1 24 2.2 從動橋總體結(jié)構(gòu)選擇 本前橋采用非斷開式轉(zhuǎn)向從動橋 2.3 確定前橋具體結(jié)構(gòu)型式 (1)前軸結(jié)構(gòu)形式:工字形斷面加叉形轉(zhuǎn)向節(jié)主銷固定在前軸兩端的拳部里。 (2)轉(zhuǎn)向節(jié)結(jié)構(gòu)型式:整體鍛造式。 (3)主銷結(jié)構(gòu)型式:圓柱實心主銷。 (4)轉(zhuǎn)向節(jié)止推軸承結(jié)構(gòu)形式:止推滾柱軸承。 (5)主銷軸承結(jié)構(gòu)形式:滾針軸承 (6)輪轂軸承結(jié)構(gòu)形式:單列向心球軸承 (7)前輪定位角選擇見表 1 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 11 3.前軸設(shè)計 3.1 前軸強(qiáng)度計算 3.1.1 前軸受力分析簡圖 如圖 3-1 所示: 圖 3-1 轉(zhuǎn)向從動橋在制動和側(cè)滑工況下的受力分析簡圖 Figure 3-1 Bridge in the braking and steering yaw driven condition of the force analysis diagram 1制動工況下的彎矩圖和轉(zhuǎn)矩圖; 2側(cè)滑工況下的彎矩圖 1 - braking and torque diagram of bending moment diagram 2 - yaw moment map condition 東風(fēng) EQ1090E 型貨車轉(zhuǎn)向橋總成的設(shè)計 12 3.1.2 前軸載荷的計算(分三種工況分析) 一、緊急制動 汽車緊急制動時,縱向力制動力達(dá)到最大值,因質(zhì)量重新分配,而使前軸 上的垂直載荷增大,對后輪接地點取矩得 取路面附著系數(shù) =0.7 制動時前軸軸載質(zhì)量重新分配分配系數(shù) m1= = =1.34 (3-1)12Lhg1.5407 垂直反作用力:Z1l= Z 1r= =7437N21Gm034. 橫向反作用力:X1l=X 1r= =5205.9N (3-2)1 二、側(cè)滑 汽車側(cè)滑時,因橫向力的作用,汽車前橋左右車輪上的垂直載荷發(fā)生轉(zhuǎn)移。 (1)確定側(cè)向滑移附著糸數(shù): 在側(cè)滑的臨界狀態(tài),橫向反作用力等于離心力 F 離,并達(dá)到最大值 F 離 = ,Ymax=G1,為保證不橫向翻車,須使 V 滑
收藏