【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見壓縮包內(nèi)的文件及預(yù)覽,所見才能所得,請(qǐng)細(xì)心查看有疑問可以咨詢QQ:414951605或1304139763
河南理工大學(xué)萬方科技學(xué)院
本科畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
題目名稱
DZ型單體液壓支柱
學(xué)生姓名
王波
專業(yè)班級(jí)
機(jī)械設(shè)計(jì)3班
學(xué)號(hào)
08280700142
一、 選題的目的和意義:
隨著我國(guó)煤炭事業(yè)的不斷發(fā)展,單體液壓支柱也越來越多地廣泛用于生產(chǎn),它與一般的金屬支柱相比回收率高,支護(hù)安全可靠性好,工作阻力恒定,初撐力高,不受井下過多條件的影響,頂板的下沉量小容易保護(hù)頂板完整,容易實(shí)現(xiàn)穩(wěn)定高產(chǎn)等優(yōu)點(diǎn)
。對(duì)于我國(guó)煤炭事業(yè)向普通機(jī)械化生產(chǎn)方向發(fā)展,并向綜合機(jī)械化生產(chǎn)過度都十分有利,它與液壓支架相比,能大量節(jié)省鋼材,并且適用范圍廣泛,但單體液壓支柱成本高,加工復(fù)雜,需要人工搬動(dòng)所以設(shè)計(jì)時(shí)要求再能滿足強(qiáng)度要求的情況下盡可能的減輕重量,總的看來,廣泛研究新型液壓支柱對(duì)目前發(fā)展煤炭事業(yè)有著極其重要的意義。
本設(shè)計(jì)目的在于進(jìn)一步簡(jiǎn)化支柱結(jié)構(gòu),提高加工質(zhì)量及支柱強(qiáng)度,降低成本。
二、 國(guó)內(nèi)外研究綜述:
目前我國(guó)單體液壓支柱分類及發(fā)展?fàn)顩r 單體液壓支柱單體液壓支柱由油缸、活柱、閥等零部件組成,以專用油或高含 水液壓液(含乳化液)等為工作液,供礦山支護(hù)用的單根支柱。屬于 恒阻式支柱,具有不變的額定工作阻力,它和金屬鉸接頂梁配合使 用,主要使用在煤礦回采工總面頂板支護(hù)、煤礦綜采工作面端頭支護(hù) 和回采工總面巷道的前支護(hù)臨時(shí)支護(hù),可用于煤層傾角在 35°以下的 任何采煤工作面,支柱支護(hù)密度根據(jù)地質(zhì)狀況和采煤方式而定。由于 煤層自身的賦存條件(如近水平煤層、斜煤層、急斜煤層、直倒立轉(zhuǎn) 煤層、 “雞窩”煤層等)和煤層賦存地質(zhì)條件的復(fù)雜性(如在一塊煤 田中,有大落差的斷層,而較小的斷層更是層出不窮) ,在眾多的煤 礦井下支護(hù)產(chǎn)品中,單體液壓支柱與鉸接頂梁配合使用,具有投資 少、受地質(zhì)條件限制少、使用和維護(hù)簡(jiǎn)單方便且操作靈活等特點(diǎn),是 我國(guó)和東南亞等國(guó)家煤礦工作面的支護(hù)的主導(dǎo)設(shè)備,與綜采液壓支架 等其他多種支護(hù)形式產(chǎn)品將長(zhǎng)期并存發(fā)展。 單體支護(hù)設(shè)備經(jīng)歷了三次飛躍發(fā)展,分別是 60 年代研制使用的 單體金屬摩擦支柱(現(xiàn)已基本淘汰) ,70 年代中期研制 80 年代推廣的 活塞式單體液壓支柱,90 年代末研制應(yīng)用的 DWX 型柱塞懸浮式單體液 壓支柱,使單體支護(hù)設(shè)備及支護(hù)技術(shù)得到突破性發(fā)展。。
國(guó)外主要煤炭生產(chǎn)國(guó)中,單體液壓支柱曾經(jīng)在回采工作面廣泛使用,最早使用國(guó)家在四十年代末就有該產(chǎn)品問世。其后,聯(lián)邦德國(guó)、日本、波蘭、蘇聯(lián)等國(guó)也相繼在五十年代使用。從國(guó)外單體液壓支柱的使用情況表明,在六十年代初期其技術(shù)即達(dá)到成熟階段。
三、畢業(yè)設(shè)計(jì)(論文)所用的主要技術(shù)與方法
1.?確定總體方案
2.利用液壓、機(jī)械原理、材料力學(xué)、理論力學(xué)等知識(shí)進(jìn)行技術(shù)設(shè)計(jì)
3.在網(wǎng)上查閱相關(guān)資料
4.利用CAD或Pro\E計(jì)算機(jī)繪圖和手工方法繪制相關(guān)圖
5.對(duì)所選數(shù)據(jù)進(jìn)行分析和計(jì)算
四、主要參考文獻(xiàn)與資料獲得情況:
1.李炳文 單體液壓支柱 煤炭工業(yè)部物資供應(yīng)局出版社,2001
2. 成大先.機(jī)械設(shè)計(jì)手冊(cè)[K].3卷.北京:化學(xué)工業(yè)出版社,2007.
3. 成大先.機(jī)械設(shè)計(jì)手冊(cè)[K].4卷.北京:化學(xué)工業(yè)出版社,2007.
4. 機(jī)械制圖手冊(cè)
5. 成大先.機(jī)械設(shè)計(jì)手冊(cè)[K].2卷.北京:化學(xué)工業(yè)出版社,2007.
6. 劉鴻文 材料力學(xué) M 北京教育出版社
五、畢業(yè)設(shè)計(jì)(論文)進(jìn)度安排(按周說明)
第5~6周:查找資料,并確定自己的設(shè)計(jì)題目并完成開題報(bào)告;
第7~10周:開始著手計(jì)算與設(shè)計(jì)并繪制草圖;
第11~13周:計(jì)算機(jī)繪圖,繪制精圖;
第14~15周:修改并完成說明書;
第16 周:讓指導(dǎo)教師修改設(shè)計(jì)準(zhǔn)備答辯
六、 指導(dǎo)教師審批意見:
指導(dǎo)教師: (簽名)
年 月 日
河南理工大學(xué)萬方科技學(xué)院
本科畢業(yè)設(shè)計(jì)(論文)中期檢查表
指導(dǎo)教師: 李延鋒 職稱: 教授
所在院(系): 機(jī)械與動(dòng)力工程學(xué)院 教研室(研究室): 機(jī)械與動(dòng)力工程部
題 目
單體液壓支柱
學(xué)生姓名
牛 翔
專業(yè)班級(jí)
08機(jī)設(shè)三班
學(xué)號(hào)
0828070142
一、選題質(zhì)量:(主要從以下四個(gè)方面填寫:1、選題是否符合專業(yè)培養(yǎng)目標(biāo),能否體現(xiàn)綜合訓(xùn)練要求;2、題目難易程度;3、題目工作量;4、題目與生產(chǎn)、科研、經(jīng)濟(jì)、社會(huì)、文化及實(shí)驗(yàn)室建設(shè)等實(shí)際的結(jié)合程度)
1、本題目符合機(jī)械設(shè)計(jì)專業(yè)的培養(yǎng)目標(biāo),能夠充分鍛煉和培養(yǎng)分析問題和實(shí)際操作能力,能夠體現(xiàn)綜合訓(xùn)練的要求;
2、本題目難易適中,符合本科畢業(yè)設(shè)計(jì)要求;
3、本題目工作量適中,能在規(guī)定的時(shí)間內(nèi)完成;
4、所選題目單體液壓支柱的設(shè)計(jì)與實(shí)際貼合比較緊密,在實(shí)際的應(yīng)用中比較廣泛。在設(shè)計(jì)過程中,對(duì)機(jī)器的零件的設(shè)計(jì)和計(jì)算對(duì)我來說是以往所學(xué)知識(shí)的總結(jié)和應(yīng)用,所以能夠滿足綜合訓(xùn)練的要求
二、開題報(bào)告完成情況:
根據(jù)自己在各方面資料的收集和整理,通過對(duì)可行性的分析,結(jié)合實(shí)際因素,我完成了這次設(shè)計(jì)的選題。在選題結(jié)束之后,通過自己認(rèn)真查閱相關(guān)的資料,最后結(jié)合本身的實(shí)際情況和設(shè)計(jì)的時(shí)間任務(wù)完成了開題報(bào)告。
三、階段性成果:
1、通過對(duì)單體液壓支柱的了解,再加上有關(guān)書籍的介紹,算是對(duì)單體液壓支柱有了一個(gè)大概的了解。前期階段主要是對(duì)有關(guān)于單體液壓支柱的各方面的文獻(xiàn)和資料進(jìn)行搜集,為設(shè)計(jì)以后的設(shè)計(jì)做了必要的準(zhǔn)備。
2、中期階段主要是依據(jù)參考資料,從上面找到一些關(guān)于關(guān)于單體液壓支柱的信息,首先對(duì)其零部件有了大致的了解,其次是已有了大概的設(shè)計(jì)方法,并開始了一些基本的結(jié)構(gòu)設(shè)計(jì)。
3、正在進(jìn)行裝配圖的CAD畫圖和設(shè)計(jì)說明書。
四、存在主要問題:
由于這是我第一次單獨(dú)進(jìn)行單體液壓支柱總體設(shè)計(jì),所以剛開始進(jìn)展的并不是很順利。而我對(duì)這方面的知識(shí)掌握比較少,所以需要在圖書館和網(wǎng)上查找更多的相關(guān)資料,對(duì)有關(guān)起重機(jī)的知識(shí)進(jìn)行更深入的了解。不過我堅(jiān)信,只要自己努力和在指導(dǎo)老師的指引下,我能把各方面的問題逐個(gè)擊破,最終順利完成畢業(yè)設(shè)計(jì)。
五、指導(dǎo)教師對(duì)學(xué)生在畢業(yè)實(shí)習(xí)中,勞動(dòng)、學(xué)習(xí)紀(jì)律及畢業(yè)設(shè)計(jì)(論文)進(jìn)展等方面的評(píng)語
指導(dǎo)教師: (簽名)
年 月 日
2
Hydraulic System
There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.
Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:
1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.
2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.
3.Actuators which convert hydraulic power to usable mechanical power output at the point required.
4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.
5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).
6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.
Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.
The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.
Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.
Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.
Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.
Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.
Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.
Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.
There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.
Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:
Pumps which convert available power from the prime mover to hydraulic power at the actuator.
Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.
Actuators which convert hydraulic power to usable mechanical power output at the point required.
The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.
Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).
Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.
Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.
The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.
Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.
1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.
2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.
3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.
4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.
Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.
液壓系統(tǒng)
僅有以下三種基本方法傳遞動(dòng)力:電氣,機(jī)械和流體。大多數(shù)應(yīng)用系統(tǒng)實(shí)際上是將三種方法組合起來而得到最有效的最全面的系。為了合理的確定采取哪種方法,重要的是了解各種方法的顯著特征。例如液壓系統(tǒng)在長(zhǎng)距離上比機(jī)械系統(tǒng)更能經(jīng)濟(jì)的傳遞動(dòng)力。然而液壓系統(tǒng)與電氣系統(tǒng)相比,傳遞動(dòng)力的距離較短。
液壓動(dòng)力傳遞系統(tǒng)涉及電動(dòng)機(jī),調(diào)節(jié)裝置和壓力和流量控制,總的來說,該系統(tǒng)包括:
泵:將原動(dòng)機(jī)的能量轉(zhuǎn)換成作用在執(zhí)行部件上所謂液壓能。
閥:控制泵產(chǎn)生流體的運(yùn)動(dòng)方向,產(chǎn)生的功率的大小,以及到達(dá)執(zhí)行部件液體的流量。功率大小取決與對(duì)流量和壓力大小的控制。
執(zhí)行部件:將液壓能轉(zhuǎn)換成可用的機(jī)械能。
介質(zhì)即油液:可進(jìn)行無壓縮傳遞和控制,同時(shí)可以潤(rùn)滑部件,使閥體密封和系統(tǒng)冷卻。
聯(lián)結(jié)件:聯(lián)結(jié)各個(gè)系統(tǒng)部件,為壓力流體提供功率傳輸通路,將液體返回油箱(貯油器)。
油液貯存和調(diào)節(jié)裝置:用來確保提供足夠質(zhì)量和數(shù)量并冷卻的液體。
液壓系統(tǒng)在工業(yè)中應(yīng)用廣泛,例如沖壓,鋼類工件的磨削及一般加工業(yè),農(nóng)業(yè),礦業(yè),航天技術(shù),深??碧?,運(yùn)輸,海洋技術(shù),近海天然氣和石油勘探等行業(yè),簡(jiǎn)而言之,在日常生活中很少有人不從液壓技術(shù)中得到某種益處。
液壓系統(tǒng)成功而又廣泛使用的秘密在于它的通用性和易作性。液壓動(dòng)力傳遞不會(huì)像機(jī)械系統(tǒng)那樣受到機(jī)器幾何形體的制約,另外,液壓系統(tǒng)不會(huì)像電氣系統(tǒng)那樣受到材料物理性能的制約,它對(duì)傳遞功率幾乎沒有量的限制。例如,一個(gè)電磁體的性能受到鋼的磁飽和極限的限制,相反,液壓系統(tǒng)的功率僅僅受材料強(qiáng)度的限制。
企業(yè)為了提高生產(chǎn)率將越來越依靠自動(dòng)化,這包括遠(yuǎn)程和直接控制生產(chǎn)操作,加工過程和材料處理等。液壓動(dòng)力之所以成為自動(dòng)化的重要組成分,是因?yàn)樗腥缦轮饕乃姆N優(yōu)點(diǎn):
1. 控制方便精確 通過操作一個(gè)簡(jiǎn)單的操作桿和按鈕,液壓系統(tǒng)的操作者便能立即啟動(dòng),停止,加減速和能提供任意功率,位置精度為萬分之一英寸的位置控制力。
2. 增力 一個(gè)液壓系統(tǒng)(沒有使用笨重的齒輪,滑輪和杠桿)
能簡(jiǎn)單有效地將不到一盎司的力放大產(chǎn)生幾百噸力的輸出。
3. 恒力和恒扭矩 只有液壓系統(tǒng)能提供不隨速度變化的恒力或恒扭矩,它可以驅(qū)動(dòng)對(duì)象從每小時(shí)移動(dòng)幾英寸到每分鐘幾百英寸,從每小時(shí)幾百轉(zhuǎn)到每分鐘幾千轉(zhuǎn)。
4. 簡(jiǎn)單,安全,經(jīng)濟(jì) 總的來說,液壓系統(tǒng)比機(jī)械或電氣系統(tǒng)使用更少的運(yùn)動(dòng)部件,因此,它們運(yùn)行與維護(hù)簡(jiǎn)單。這使的系統(tǒng)結(jié)構(gòu)緊湊,安全可靠。例如一種用于車輛上的新型動(dòng)力轉(zhuǎn)向控制裝置已淘汰其他類型的轉(zhuǎn)向動(dòng)力裝置,該轉(zhuǎn)向部件中包含有人力操作方向控制閥和分配器。因?yàn)檗D(zhuǎn)向部件是全液壓的,沒有萬向節(jié),軸承,減速齒輪等機(jī)械連接,這使得系統(tǒng)簡(jiǎn)單緊湊。
另外,只需輸入很小的扭矩就能產(chǎn)生滿足極惡劣工作條件所需的控制力,這對(duì)于因操作空間限制而需要方向盤的場(chǎng)合很重要,這也是減輕司機(jī)疲勞度所必需的。
液壓系統(tǒng)的其他優(yōu)點(diǎn)包括雙向運(yùn)動(dòng),過載保護(hù)和無級(jí)變速控制,在已有的任何動(dòng)力系統(tǒng)中液壓系統(tǒng)亦具有最大的單位質(zhì)量功率比。
盡管液壓系統(tǒng)具有如此高性能,但它不是可以解決所有動(dòng)力傳遞問題的靈丹妙藥。液壓系統(tǒng)也有些缺點(diǎn),液壓油有污染,并且泄露不可能完全避免,另外如果油液滲漏發(fā)生在灼熱設(shè)備附近,大多數(shù)液壓油能引起火災(zāi)。
氣壓系統(tǒng)
氣壓系統(tǒng)是用壓力氣體傳遞和控制動(dòng)力,正如名稱所表明的那樣,氣壓系統(tǒng)通常用空氣(不用其它的氣體)作為流體介質(zhì),因?yàn)榭諝馐前踩?、成本低而又隨處可得的流體,在系統(tǒng)部件中產(chǎn)生電弧有可能點(diǎn)燃泄露物的的場(chǎng)合下(使用空氣作為介質(zhì))尤其安全。
在氣壓系統(tǒng)中,壓縮機(jī)用來壓縮并供應(yīng)所需的空氣。壓縮機(jī)一般有活塞式、葉片式和螺旋式等類型。壓縮機(jī)基本上是根據(jù)理想氣體法則,通過減小氣體體積來增加氣體壓力的。氣壓系統(tǒng)通常考慮采用大的中央空氣壓縮機(jī)作為一個(gè)無限量的氣源,這類似于電力系統(tǒng)中只要將插頭插入插座便可獲得電能。用這種方法,壓力氣體可以從氣源輸送到整個(gè)工廠的各個(gè)角落,壓力氣體可通過空氣氣濾器除去污物,這些污物可能會(huì)損壞氣動(dòng)組件的精密配合部件如閥和氣缸等,隨后輸送到各個(gè)回路中,接著空氣流經(jīng)減壓閥以減小氣壓值適合某一回路使用。因?yàn)榭諝?
不是好的潤(rùn)滑劑(包括20%的氧氣),氣壓系統(tǒng)需要一個(gè)油霧器將細(xì)小的油霧注射到經(jīng)過減壓閥減壓的空氣中,這有助于減少氣動(dòng)組件精密配合運(yùn)動(dòng)件的磨損。
由于來自大氣中的空氣含不同數(shù)量的水分,這些水分是有害的,它可以帶走潤(rùn)滑劑引起過分磨損和腐蝕,因此,在一些使用場(chǎng)合中,要用空氣干燥器來除去這些有害的水分。由于氣壓系統(tǒng)直接 向大氣排氣,會(huì)產(chǎn)生過大噪音,因此可在氣閥和執(zhí)行組件排氣口安裝消聲器來降低噪音,以防止操作人員因接觸噪聲及高速空氣粒子有可能引發(fā)的危害。
用氣動(dòng)系統(tǒng)代替液壓系統(tǒng)有以下幾條理由:液體的慣性遠(yuǎn)比氣體大,因此,液壓系統(tǒng)中,當(dāng)執(zhí)行組件加速和減速和閥突然開啟關(guān)閉時(shí),油液的質(zhì)量便是一個(gè)潛在的問題,根據(jù)牛頓運(yùn)動(dòng)定律(力等于質(zhì)量乘以加速度),產(chǎn)生加速運(yùn)動(dòng)油液所需的力要比加速同等體積空氣的力高出許多倍4。液體比氣體具有更大的粘性,這會(huì)因?yàn)閮?nèi)摩擦而引起更大的壓力 和功率損失:另外,由于液壓系統(tǒng)使用的液體要與大氣隔絕,故他們需要特殊的油箱和無泄露系統(tǒng)設(shè)計(jì)。氣壓系統(tǒng)使用可以直接排到周圍環(huán)境中的空氣,一般來說氣壓系統(tǒng)沒有液體系統(tǒng)昂貴。
然而,由于空氣的可壓縮性,使得氣壓系統(tǒng)執(zhí)行組件不可能得到精確的速度控制和位置控制。氣壓系統(tǒng)由于壓縮機(jī)局限,其系統(tǒng)壓力相當(dāng)?shù)停ǖ赜?50psi),而液壓力可達(dá)1000psi之高,因此液壓系統(tǒng)可以是大功率系統(tǒng),而氣動(dòng)系統(tǒng)僅用于小功率系統(tǒng),典型例子有沖壓、鉆孔、提升、沖孔、夾緊、組裝、鎦接、材料處理和邏輯控制操作等。
10