2019-2020年高三11月月考 理科數學 含答案.doc
《2019-2020年高三11月月考 理科數學 含答案.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三11月月考 理科數學 含答案.doc(8頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三11月月考 理科數學 含答案 xx年11月 一.選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的. 1.已知集合,.則( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 2.已知等比數列的公比,且成等差數列,則的前8項和為( ) A. 127 B. 255 C. 511 D. 1023 3. 在中,,,是邊上的高,則的值等于( ) A.0 B. C.4 D. 4.對于任意兩個正整數,定義某種運算“※”如下:當都為正偶數或正奇數時,※=;當中一個為正偶數,另一個為正奇數時,※=.則在此定義下,集合※中的元素個數是( ) A.10個 B.15個 C.16個 D.18個 5.n∈N* ,“數列{an}是等差數列”是“點Pn在一條直線上”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 6.函數的零點個數為( ) A. 1 B.2 C. 3 D.4 7. 已知圖1是函數的圖象,則圖2中的圖象對應的函數可能是 ( ) x y O 圖2 x y O 圖1 A. B. C. D. 8.若函數,則下列結論正確的是( ) ①,在上是增函數 ②,在上是減函數 ③,是偶函數 ④,是奇函數 以上說法正確的有幾個( ) A.0個 B. 1個 C. 2個 D. 3個 9、曲線與直線及所圍成的封閉圖形的面積為( ) A. B. C. D. 10、若函數在區(qū)間內為減函數,在區(qū)間為增函數,則實數a的取值范圍是( ) A. B. C. D. . 11.在△ABC所在平面上有三點P、Q、R,滿足 ,則△PQR的面積與△ABC的面積之比為( ) A.1:2 B.1:3 C.1:4 D.1:5 二、填空題:本大題共4小題,每小題4分,共16分.將答案填寫在題中橫線上. 13.已知sinθ+cosθ= (0<θ<π,則cos2θ的值為_______. 14.在中,已知、、成等比數列,且,則______. 15.在等比數列中,若 ,則 . 16. 關于函數,下列命題: ①、存在,且時,成立; ②、在區(qū)間上是單調遞增; ③、函數的圖像關于點成中心對稱圖像; ④、將函數的圖像向左平移個單位后將與的圖像重合.其中正確的命題序號 (注:把你認為正確的序號都填上) 三、解答題:本大題共6小題,共74分,解答應寫出文字說明、證明過程或演算步驟。 17.(本題滿分12分) 已知函數,直線是函數的圖像的任意兩條對稱軸,且的最小值為. (I)求的值; (II)求函數的單調增區(qū)間; (III)若,求的值. 18、(本題滿分12分) 設等差數列的前項和為,且(是常數,),. (Ⅰ)求的值及數列的通項公式; (Ⅱ)證明:. 19、(本題滿分12分) 在△ABC中,角A、B、C所對的邊分別為a、b、c, q=(,1),p=(, )且.求: (1)求sin A的值; (II)求三角函數式的取值范圍. 20、(本題滿分12分) 數列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*). (1)求數列{an}的通項公式; (2)若數列{bn}滿足:an=+++…+,求數列{bn}的通項公式; (3)令cn=(n∈N*),求數列{cn}的前n項和Tn. 21. (本題滿分13分) 已知函數 (1)求函數在點處的切線方程; (2)求函數單調遞增區(qū)間; (3)若存在,使得是自然對數的底數),求實數的取值范圍. 22.(本題滿分13分) 設函數 (I) 若x=2是函數f(x)的極值點,1和是函數的兩個不同零點,且,求。 (II) 若對任意, 都存在(e 為自然對數的底數),使得成立,求實數的取值范圍。 高三(理科)數學月考試題(xx-11) 一.選擇題 ABBBC BCBDB BB 二.填空題 13. - 14. 15. 16. ①、③ 三.解答題 17. 18.(Ⅰ)解:因為, 所以當時,,解得, --------------2分 當時,,即,解得, 所以,解得; --------------4分 則,數列的公差, 所以. -------6分 (Ⅱ)因為 ---------8分 ---------10分 . 因為 所以 . --------12分 19.解:(I)∵,∴,根據正弦定理,得, 又, ,,,又;sinA= ……………………………6分 (II)原式, , ∵,∴,∴, ∴,∴的值域是……………………12分 20、[解析] (1)當n=1時,a1=S1=2, 當n≥2時,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,知a1=2滿足該式 ∴數列{an}的通項公式為an=2n.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2分 (2)an=+++…+(n≥1)① ∴an+1=+++…++② ②-①得,=an+1-an=2,bn+1=2(3n+1+1), 故bn=2(3n+1)(n∈N*). ………………………………………………..6分 (3)cn==n(3n+1)=n·3n+n, ∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n) 令Hn=1×3+2×32+3×33+…+n×3n,① 則3Hn=1×32+2×33+3×34+…+n×3n+1② ①-②得,-2Hn=3+32+33+…+3n-n×3n+1=-n×3n+1 ∴Hn=。 ∴數列{cn}的前n項和Tn=+. ………………… 12分 21. ⑴因為函數, 所以,,…………………………………………2分 又因為,所以函數在點處的切線方程為. …………4分 ⑵由⑴,. 因為當時,總有在上是增函數, 又,所以不等式的解集為, 故函數的單調增區(qū)間為.………………………………………………8分 ⑶因為存在,使得成立, 而當時,, 所以只要即可. 又因為,,的變化情況如下表所示: 減函數 極小值 增函數 所以在上是減函數,在上是增函數,所以當時,的最小值 ,的最大值為和中的最大值. 因為, 令,因為, 所以在上是增函數. 而,故當時,,即; 當時,,即. 所以,當時,,即,函數在上是增函數,解得;當時,,即,函數在上是減函數,解得. 綜上可知,所求的取值范圍為.……………… 12分 22、(Ⅰ),∵是函數的極值點,∴.∵1是函數的零點,得, 由解得. ………2分 ∴,, 令,,得; 令得, 所以在上單調遞減;在上單調遞增.……4分 故函數至多有兩個零點,其中, 因為, ,所以,故.……6分 (Ⅱ)令,,則為關于的一次函數且為增函數,根據題意,對任意,都存在,使得成立,則在有解,令,只需存在使得即可,由于=, 令,, ∴在(1,e)上單調遞增,,………9分 ①當,即時,,即,在(1,e)上單調遞增,∴,不符合題意. ②當,即時,, 若,則,所以在(1,e)上恒成立,即恒成立,∴在(1,e)上單調遞減, ∴存在,使得,符合題意. 若,則,∴在(1,e)上一定存在實數m,使得,∴在(1,m)上恒成立,即恒成立, 在(1,m)上單調遞減,∴存在,使得,符合題意. 綜上所述,當時,對任意,都存在,使得成立.…12分 附加題: 23. 考察下列命題: ①命題“若則”的否命題為“若;” ②若“”為假命題,則、均為假命題; ③命題:,使得;則:,均有; ④“上遞減” 則真命題的個數為( ). A.1 B.2 C.3 D.4 24、由曲線與直線所圍成的平面圖形(圖中的陰影部分)的面積是 . 25.設分別為的內 角的對邊,點M為的重心.如果 ,則角的大小為 . 26.(本小題滿分12分) 經市場調查,某旅游城市在過去的一個月內(以天計),第天的旅游人數 (萬人)近似地滿足=4+,而人均消費(元)近似地滿足. (Ⅰ)求該城市的旅游日收益(萬元)與時間的函數關系式; (Ⅱ)求該城市旅游日收益的最小值. 附加題答案 23.C 24. 25. 26.(Ⅰ)解: ………………………4分 = …………………………6分 (Ⅱ)當,(t=5時取最小值)……9分 當,因為遞減, 所以t=30時,W(t)有最小值W(30)= , ………11分 所以時,W(t)的最小值為441萬元 ………12分- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三11月月考 理科數學 含答案 2019 2020 年高 11 月考 理科 數學 答案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-1963722.html