欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論

上傳人:san****019 文檔編號(hào):20002190 上傳時(shí)間:2021-01-24 格式:PPT 頁(yè)數(shù):33 大小:310KB
收藏 版權(quán)申訴 舉報(bào) 下載
汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論_第1頁(yè)
第1頁(yè) / 共33頁(yè)
汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論_第2頁(yè)
第2頁(yè) / 共33頁(yè)
汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論_第3頁(yè)
第3頁(yè) / 共33頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論》由會(huì)員分享,可在線閱讀,更多相關(guān)《汽車結(jié)構(gòu)有限元分析第二講有限元基礎(chǔ)理論(33頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、課件僅作為學(xué)習(xí)交流之用,不能用 于商業(yè)用途 第二講 有限元基礎(chǔ)理論 及平面問(wèn)題有限元方法 講述以下問(wèn)題 - 1.有限元與力學(xué)關(guān)系 2.回顧 -材料力學(xué)研究對(duì)象與研究方法 3.強(qiáng)度 問(wèn)題 、 剛度 問(wèn)題、 穩(wěn)定性 問(wèn)題 4.點(diǎn)的應(yīng)力狀態(tài) -空間問(wèn)題 5.廣義 Hooke定律 6.彈性力學(xué)的基本方程 7.彈性力學(xué)問(wèn)題分類 8.三大方程、三類問(wèn)題、三種解法 9.平面問(wèn)題 10.平面問(wèn)題的有限元方法 1.有限元與力學(xué)關(guān)系 彈性力學(xué)與理論力學(xué)區(qū)別:理論力學(xué)研究對(duì)象是質(zhì)點(diǎn)、質(zhì) 點(diǎn)系與 剛體(質(zhì)點(diǎn)系力學(xué)與剛體力學(xué)) 。 材料力學(xué)與彈性力學(xué)研究 變形體 。 力學(xué)分支眾多: 材料力學(xué)、結(jié)構(gòu)力學(xué)、彈性力學(xué)、板殼力

2、 學(xué)、塑性力學(xué)、 斷裂力學(xué)、損傷力學(xué)、復(fù)合材料力學(xué) 、 結(jié) 構(gòu)穩(wěn)定性理論、振動(dòng)理論、流體力學(xué) 、結(jié)構(gòu)動(dòng)力學(xué)等 ; 有限元方法是以力學(xué)理論為基礎(chǔ),是一種現(xiàn)代數(shù)值計(jì)算方 法,是一種解決工程實(shí)際問(wèn)題的數(shù)值計(jì)算工具,是現(xiàn)代設(shè) 計(jì)與分析方法的支柱! 2.回顧 -材料力學(xué)研究對(duì)象與研究方法 研究各種工程結(jié)構(gòu):常見(jiàn)的如下結(jié)構(gòu)元件(構(gòu)件) : ( 1) 桿、桿系、梁、柱, (長(zhǎng) 寬和高) -材料力學(xué) ( 2) 板 (中厚板 )、殼, (厚 長(zhǎng)與寬) -扳殼力學(xué) ( 3) 三維體 , -彈性力學(xué) 截面法是處理固體力學(xué)問(wèn)題的最基本的方法: 通過(guò)外力(作用力和約束力)與內(nèi)力(應(yīng)力)平衡求構(gòu)件的響應(yīng), 通過(guò)本構(gòu)(物理

3、)關(guān)系求變形(位移與應(yīng)變), 最重要的是材料力學(xué)中的 平截面法 ,其中尤以梁的平截面假設(shè)最 為重要。 -簡(jiǎn)化計(jì)算! 平截面假設(shè) 初始與梁的中性軸垂直的平面 ,在變形后仍垂直于 軸線 , 并且在垂直軸線方向上無(wú)變形; 梁的基本方程: 2 2 dx wd EI M 1 2 2 dx wd 2max 6 bh M )4(2 22 ayhIQ bh Q 2 3 max max max I yM 3.研究工程結(jié)構(gòu)在使用狀態(tài)下的 安 全性 、 可靠性、使用性等 ,實(shí)現(xiàn) 結(jié)構(gòu)的功能與性能。 強(qiáng)度 問(wèn)題 (應(yīng)力值不超過(guò)許用值 ) ; 剛度 問(wèn)題 (變形不太大 ); 穩(wěn)定性 問(wèn)題(不失穩(wěn)); 振動(dòng) 問(wèn)題(量值在

4、限制范圍); 碰撞問(wèn)題(安全生存空間); 4 .點(diǎn)的應(yīng)力狀態(tài) -空間問(wèn)題 彈性問(wèn)題 應(yīng)力只取決于應(yīng)變狀態(tài),與達(dá)到該狀態(tài)的過(guò)程無(wú)關(guān) 。 九個(gè)應(yīng)力分量,九個(gè)應(yīng)變分量(獨(dú)立變量各六個(gè))。 單元體研究方法。 zzyzx yzyyx xzxyx zzyzx yzyyx xzxyx 2 1 2 1 2 1 2 1 2 1 2 1 6.彈性力學(xué)的基本方程 -三大方程 物理方程 x=2Gx + xy = Gxy y=2Gy + yz = Gyz z=2Gz + zx = Gzx 0 Xzyx zxyxx 0 Yzyx zyyxy 0 Zzyx zyzxz 平衡方程 x u x x v y u xy y v y

5、 y w z v yz z w z z u x w zx 幾何方程 5.各向同性彈性體 廣義 Hooke定律 EE zyx x xyxy E 12 EE xzy y yzyz E 12 EE yxz z zxzx E 12 彈性力學(xué)有 15個(gè)基本方程 : 3個(gè)平衡方程; 6個(gè)幾何方程; 6個(gè)本構(gòu)方程; 15個(gè)基本未知量 : 3個(gè)位移分量; 6個(gè)應(yīng)力分量; 6個(gè)應(yīng)變分量; * 加適當(dāng)邊界條件。 彈性力學(xué)問(wèn)題解法 -三種解法(位移法、應(yīng)力法、混合法) 物理方程 應(yīng)力 平衡微分方程 靜力邊界條件 變形 (位移與應(yīng)變 ) 變形協(xié)調(diào)方程 (或位移單值連續(xù) ) 位移邊界條件 以位移作為未知數(shù) 幾何方程求應(yīng)

6、變 物理方程求應(yīng)力 位移解法 聯(lián)立求解 彈性力學(xué)問(wèn)題分類 -三類邊界問(wèn)題 靜力邊界問(wèn)題 位移邊界問(wèn)題 混合邊界問(wèn)題 S u S ( X , Y , Z ) ( X ,Y ,Z ) 由位移表示的平衡微分方程 其中 是 Lplace算子 靜力邊界條件使用位移表示 位移邊界條件 0)( XxGuG 2 0)( YyGvG 2 0)( ZGwG 2 z 2 2 2 2 2 22 zyx 9. 平面問(wèn)題 平面應(yīng)變 物體是一柱體,軸向方向很長(zhǎng) 所有外力(體積力和面力)都平行 于橫截面作用,且沿軸線大小不變 平面應(yīng)力 沿 z方向的厚度 t均勻且很小 所有外力均作用在板的周邊和板內(nèi), 平行于板面作用,且沿厚度

7、不變 x y z y t/ 2t/ 2 z x y 平面應(yīng)變特點(diǎn) ( 1)位移 u=u(x,y) v=v(x,y) w = 0 ( 2)應(yīng)變 平面內(nèi), x、 y、 xy 0,均為 x、 y的函數(shù); 平面外, z=xz=yz =0; ( 3)應(yīng)力 z=(x+y) 平面問(wèn)題的協(xié)調(diào)方程 01 )( yxzz E yx r xy xyyx 2 2 2 2 2 2 平面應(yīng)力特點(diǎn) ( 1)應(yīng)力 在 z = 的面上各點(diǎn)沒(méi)有任何應(yīng)力 z=zx =zy =0 在面內(nèi): x、 y、 xy 0 ( 2)應(yīng)變 2 t xyxyyxyyxx E EE EE 12 yxz E xz=yz=0 ( 3) 位移 u=u(x,

8、y) v=v(x,y) w 0 平面問(wèn)題平衡微分方程 0 Xyx yxx 0 Yyx yxy 平面問(wèn)題幾何方程 y v y x v y u xy x u x 10. 有 限 元 方 法 概 念 平面問(wèn)題的有限元法 用彈性力學(xué)經(jīng)典解法解決實(shí)際問(wèn)題的主要困難在于求解偏微分方程 的復(fù)雜性 , 而有限元方法則將原來(lái)連續(xù)的彈性體離散化 , 其中最簡(jiǎn) 單的就是采用三角形單元對(duì)彈性體進(jìn)行劃分 。 把整個(gè)求解區(qū)域分成許多個(gè)有限小區(qū)域 , 這些小區(qū)域稱之為單元 。 在每個(gè)單元上構(gòu)造近似位移函數(shù) , 即進(jìn)行所謂的分片插值 。 在每一個(gè)單元上求勢(shì)能 。 將所有單元上的勢(shì)能加起來(lái)得彈性體的總勢(shì)能 。 最后應(yīng)用最小勢(shì)能

9、原理求解單元節(jié)點(diǎn)位移 。 對(duì)每個(gè)三角形單元選擇最簡(jiǎn)單的線性函數(shù)為位移模式, 單元中任一點(diǎn)的位移可以通過(guò) 3個(gè)結(jié)點(diǎn)的位移進(jìn)行插值運(yùn) 算,這樣整個(gè)區(qū)域中無(wú)限多個(gè)未知位移量就可以用有限 個(gè)節(jié)點(diǎn)來(lái)表示,從而避免了求解覆蓋整個(gè)區(qū)域的位移函 數(shù)的困難。平面問(wèn)題的有限元法,不僅可用來(lái)解決實(shí)際 問(wèn)題,而且通過(guò)其相對(duì)簡(jiǎn)單的概念,可以詳細(xì)了解用有 限元法對(duì)一般彈性體進(jìn)行應(yīng)力分析的基本原理和方法步 驟,了解有限元法的性能特點(diǎn),使用中應(yīng)注意的問(wèn)題, 從而為學(xué)習(xí)后續(xù)各章節(jié)打下基礎(chǔ)。 i j m x y ( x , y ) u v 下面就以平面三角形單元闡明有限元的基本概念 單元位移模式 每個(gè)節(jié)點(diǎn)在單元平面內(nèi)有兩個(gè)位移分

10、量 , 相應(yīng)有兩個(gè)自由度: 一個(gè)三角形單元有三個(gè)節(jié)點(diǎn),共 6個(gè)節(jié)點(diǎn)位移分量,其單元節(jié)點(diǎn)位移 列陣可表示為: 位移模式可取為最簡(jiǎn)單的線性函數(shù),包含 6個(gè)待定常數(shù) 、 。 Tiii vu ),( mji TmmjjiiTTmTjTie vuvuvu 1 6 3321 321 321 yxu yxu yxu mm jjj iii 3654 654 654 yxv yxv yxv mm jjj iii 一種簡(jiǎn)單的線性位移函數(shù)為: 式中 、 、 為 6個(gè)待定常數(shù) , 可以由單元的節(jié)點(diǎn)位移確定 。 設(shè)節(jié)點(diǎn) 的坐標(biāo)分別為 ( , )、 ( , ) 、 ( , ) , 其節(jié)點(diǎn)位移為 , , 將它們代入上式得:

11、 聯(lián)立求解上述公式左邊的 6個(gè)方程,可以求出待定常數(shù) : 整理后得 : yxv yxu 654 321 1 6 ix iy jx jy mx my ),(),(),( mmjjii vuvuvu 、 3321 321 321 yxu yxu yxu mm jjj iii 3654 654 654 yxv yxv yxv mm jjj iii )()()(2 1 mmmmjjjjiiii uycxbauycxbauycxbaAu )()()(2 1 mmmmjjjjiiii vycxbavycxbavycxbaAv 單元形函數(shù) 函數(shù) 表示單元內(nèi)部的位移分布形態(tài),故 可稱為單元的形態(tài)函數(shù),簡(jiǎn)稱為形

12、函數(shù)。 得到由節(jié)點(diǎn)位移表達(dá)單元內(nèi)任一點(diǎn)位移的插值公 式,即位移模式的另一形式。 )()()(2 1 mmmmjjjjiiii uycxbauycxbauycxbaAu )()()(2 1 mmmmjjjjiiii vycxbavycxbavycxbaAv ),()(2 1 mjiycxbaAN iiii ),( mjivNvNvNv uNuNuNu mmjjii mmjjii iN iN jN mN 單元應(yīng)變和應(yīng)力 m m j j i i mmjjii mji mji xy y x v u v u v u bcbcbc ccc bbb A 000 000 2 1 eB mji BBBB ee

13、SBD mji SSSBDS ),( 2/)1(2/)1()1(2 2 mji bc cb cb A EBDS ii ii ii ii 單元平衡方程 整個(gè)結(jié)構(gòu)處于平衡狀態(tài),所劃分出的 一個(gè)小單元體同樣處于平衡狀態(tài),而結(jié)構(gòu) 的平衡條件可通過(guò)節(jié)點(diǎn)的平衡條件表示。 有限元的任務(wù)就是要建立和求解整個(gè)彈性 體的節(jié)點(diǎn)位移和節(jié)點(diǎn)力之間關(guān)系的平衡方 程。為此首先要建立每一個(gè)單元的節(jié)點(diǎn)位 移和節(jié)點(diǎn)力之間關(guān)系的平衡方程。單元平 衡方程可以利用最小勢(shì)能原理建立,也可 以利用虛功原理求解。 單元節(jié)點(diǎn)力列陣 : 單元節(jié)點(diǎn)虛位移列陣: 單元內(nèi)部引起的虛應(yīng)變 : 根據(jù)虛功原理:外力虛功等于內(nèi)力虛功 。 所以節(jié)點(diǎn)力 在節(jié)點(diǎn)的

14、虛位移上所作的虛功應(yīng)等于單元內(nèi)部應(yīng)力在虛應(yīng) 變上所作的虛功 。 這就是單元保持平衡狀態(tài)所必須滿足的 條件 , 即單元的平衡條件 。 Tmmjjiie YXYXYXF Tmmjjii vuvuvu * Tzyx * t d xd yF TeeT * eTe t d x d yBDBF eee kF t dx dyBDBk Te e mmmjmi jmjjji imijii mji T m T j T i e kkk kkk kkk AtBBBD B B B k 單元?jiǎng)偠染仃?利用虛功方程來(lái)建立剛度方程,其實(shí)質(zhì)就是 單元的平衡方程 。 單元?jiǎng)偠染仃嚲哂幸韵滦再|(zhì): (1) 單元?jiǎng)偠染仃囍忻總€(gè)元素有明

15、確的物理意義。其物理意 義是單位節(jié)點(diǎn)位移分量所引起的節(jié)點(diǎn)力。例如, 是表示 當(dāng)單元第 n個(gè)自由度產(chǎn)生單位位移而其它自由度固定時(shí), 在第 m個(gè)自由度產(chǎn)生的節(jié)點(diǎn)力。 (2) 是對(duì)稱矩陣。其元素之間有如下關(guān)系: ,這個(gè)特 性是由彈性力學(xué)中功的互等定理所決定的。 ( 3) 是奇異矩陣。其每一行每一列元素之和均為零,物 理意義就是:在無(wú)約束的條件下,單元可作剛體運(yùn)動(dòng)。 根據(jù)行列式性質(zhì),可知值也為零。 mnk srrs kk ek ek 單元等效節(jié)點(diǎn)載荷 外載荷必須作用在節(jié)點(diǎn)上,而實(shí)際的 外載荷又往住并不是通過(guò)節(jié)點(diǎn)作用的。 因此,必須將這些非節(jié)點(diǎn)載荷按一定原 則移置到節(jié)點(diǎn)上,即所謂等效節(jié)點(diǎn)載荷 處理。這種

16、移置必須滿足靜力等效原則 。 處理單元內(nèi)的集中力、體力和單元邊界上 的分布力 ,慣性力則作用在整個(gè)結(jié)構(gòu)上。 總剛度矩陣 當(dāng)以有限個(gè)單元通過(guò)有限個(gè)節(jié)點(diǎn)連接而成的組 合體來(lái)代替實(shí)際的連續(xù)體結(jié)構(gòu)而受力變形時(shí),顯然 它們必須滿足整個(gè)結(jié)構(gòu)的變形連續(xù)條件和平衡條件。 在整體分析中,利用節(jié)點(diǎn)為分析對(duì)象,根據(jù)各 節(jié)點(diǎn)的靜力平衡條件,即可建立起組合體所有節(jié)點(diǎn) 的靜力平衡方程式。把它們匯集在一起,得到的平 衡方程組就代表了整個(gè)結(jié)構(gòu)的平衡條件。進(jìn)行整體 分析,即是將各個(gè)單元的平衡方程集合在一起,得 到結(jié)構(gòu)的整體平衡方程。 K為結(jié)構(gòu)的整體剛度矩陣,一般稱為總剛度矩陣, 其維數(shù)為 2n 2n??蓪?xiě)成分塊形式。 RK T

17、TnTTT 321 TTnTTT RRRRR 321 解題步驟與算例 (1)首先繪出結(jié)構(gòu)幾何簡(jiǎn)圖,在此基礎(chǔ)上將結(jié)構(gòu)離散化。平面問(wèn)題 采用三角形單元 (其他形狀單元以后講述 ),所以其離散就是將 計(jì)算對(duì)象劃分成許多三角形單元。包括:進(jìn)行節(jié)點(diǎn)編號(hào)、單元 編號(hào),任選一直角坐標(biāo)系,定出所有節(jié)點(diǎn)的坐標(biāo)值等等。確定 載荷和邊界約束條件,將各單元所受的非節(jié)點(diǎn)載荷,包括體力、 面力以及可能有的集中力按虛功等效原則移置到節(jié)點(diǎn)上,并將 各節(jié)點(diǎn)上的這些載荷(包括直接作用在節(jié)點(diǎn)上的集中載荷)分 別按相同方向 疊加等。 (2)其次進(jìn)行單元分析、組集總剛度矩陣、求單元應(yīng)力和節(jié)點(diǎn)應(yīng)力。 前處理 計(jì)算 后處理 nnnnn n

18、 n R R R nKKK KKK KKK 2 1 2 1 21 22221 11211 平面問(wèn)題的離散化 單元類型的選擇 單元的大小 單元有密有疏 不同厚度或不同材料處,應(yīng)取作為單元的邊界線 平面問(wèn)題的有限元法,不僅有實(shí)際意義, 而且通過(guò)其相對(duì)簡(jiǎn)單的概念,可以詳細(xì)了解用 有限元法對(duì)一般彈性體進(jìn)行應(yīng)力分析的基本原 理和方法步驟,了解有限元法的性能特點(diǎn),使 用中應(yīng)注意的問(wèn)題,從而為學(xué)習(xí)以后各章打下 基礎(chǔ)。 有限元解法的三個(gè)主要步驟就是: 離散化、單元分析、整體分析 。 平面高階單元 四節(jié)點(diǎn)矩形單元: 為了提高有限單元法計(jì)算結(jié)果的精 度,除了增加單元數(shù)目外,還常采用具有較高次位移函數(shù)的單元。 等參數(shù)單元: 三角形單元和矩形單元的位移模式和坐換 變換式都采用了相同的形函數(shù)。例平面四節(jié)點(diǎn)任意四邊形等參單 元。 xyyxyxv xyyxyxu 8765 4321 )( )( , , i i i uNu 4 1 )()( , i i i vNv 4 1 )()( , 合肥工業(yè)大學(xué) 車輛工程系 第二講結(jié)束語(yǔ) 溫故而知新

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!