(江蘇專用)高考數(shù)學(xué)總復(fù)習(xí) 第二章第7課時(shí) 函數(shù)的圖象及函數(shù)與方程隨堂檢測(cè)(含解析)
《(江蘇專用)高考數(shù)學(xué)總復(fù)習(xí) 第二章第7課時(shí) 函數(shù)的圖象及函數(shù)與方程隨堂檢測(cè)(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)高考數(shù)學(xué)總復(fù)習(xí) 第二章第7課時(shí) 函數(shù)的圖象及函數(shù)與方程隨堂檢測(cè)(含解析)(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1.(2010·高考湖南卷改編)函數(shù)y=ax2+bx與y=log||x(ab≠0,|a|≠|(zhì)b|)在同一直角坐標(biāo)系中的圖象可能是________. 解析:對(duì)于①、②由對(duì)數(shù)函數(shù)圖象得||>1,而拋物線對(duì)稱軸|-|<,∴||<1,∴①②不正確;對(duì)于③中對(duì)稱軸-<-,則||>1,而對(duì)數(shù)底數(shù)||<1,∴③不成立.而④中,由圖象知a>0,->-,∴||∈(0,1),滿足y=log||x為減函數(shù). 答案:④ 2. 如圖是兩個(gè)函數(shù)在定義域[-2,3]上的圖象,給出下列函數(shù)及其相應(yīng)的圖象,則其中正確的是________. ①y=;②y=[g(x)]2;③y=f(x)-g(
2、x). 解析:根據(jù)f(x),g(x)的定義域、值域、單調(diào)性可知②③錯(cuò)誤. 答案:① 3.方程2-x+x2=3的實(shí)數(shù)解的個(gè)數(shù)為________. 解析: 方程變形為3-x2=2-x=()x,令y=3-x2,y=()x. 由圖象可知有2個(gè)交點(diǎn). 答案:2 4.設(shè)x0是方程2x+x-8=0的解,且x0∈(k,k+1),k∈Z,則k=________. 解析:設(shè)y1=2x,y2=8-x,在同一坐標(biāo)系內(nèi)作出它們的圖象,可見這兩圖象有且只有一個(gè)交點(diǎn)且這個(gè)交點(diǎn)橫坐標(biāo)在2和3之間,故k=2. 答案:2 5.作出下列函數(shù)的簡(jiǎn)圖. (1)y=|2x-1|;(2)y=2-|x|; (3
3、)y=e|lnx|;(4)y=|(lg(1-x)|. 解:(1)先作出函數(shù)y=2x的圖象,將其圖象向下平移一個(gè)單長(zhǎng)度,得到y(tǒng)=2x-1的圖象,然后再將x軸下方的部分沿x軸翻折到上方,得到函數(shù)y=|2x-1|的圖象,如圖(1). (2)y=2-|x|=, 分別作出y=2x(x≤0)及y=()x的圖象,如圖(2). (3)y=e|lnx|=,所以圖象如圖(3). (4)首先作出y=lgx的圖象,將其沿y軸翻折得到y(tǒng)=lg(-x)的圖象,再將所得圖象沿x軸向右平移一個(gè)單位長(zhǎng)度,得到y(tǒng)=lg(1-x)的圖象,再將該圖象沿x軸將x軸下方的圖象翻折到x軸上方,得到y(tǒng)=|lg(1-x)|的圖象,如
4、圖(4). [A級(jí) 雙基鞏固] 一、填空題 1.若函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(1,1),則函數(shù)y=f(4-x)的圖象經(jīng)過點(diǎn)________. 解析:令4-x=1, 則函數(shù)y=f(4-x)的圖象過點(diǎn)(3,1). 答案:(3,1) 2. 已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則b的范圍為________. 解析:法一:(定性法) 根據(jù)解一元高次不等式的“數(shù)軸標(biāo)根法”可知,圖象從右上端起,應(yīng)有a>0; 又由圖象知f(x)=0的三個(gè)實(shí)根為非負(fù)數(shù), 據(jù)根與系數(shù)的關(guān)系知 -=x1+x2+x3>0,即b<0. 法二:(定量法) 據(jù)圖象知
5、f(0)=0,f(1)=0,f(2)=0, ∴?, ∴f(x)=-x3+bx2-x=-x(x-1)(x-2), 當(dāng)x>2時(shí),有f(x)>0,∴b<0. 法三:(模型函數(shù)法) 構(gòu)造函數(shù)f(x)=a(x-0)(x-1)(x-2)=ax3+bx2+cx+d, 即ax3-3ax2+2ax=ax3+bx2+cx+d, ∴,又由圖象知x>2時(shí),f(x)>0即a>0. ∴b=-3a<0,∴b∈(-∞,0). 答案:(-∞,0) 3.(2010·高考天津卷改編)函數(shù)f(x)=ex+x-2的零點(diǎn)所在的區(qū)間可以是以下區(qū)間中的________. ①(-2,-1),②(-1,0),③(0,1),
6、④(1,2) 解析:因?yàn)閒(0)=e0+0-2=-1<0,f(1)=e-1>0,f(0)·f(1)<0,所以函數(shù)f(x)在(0,1)內(nèi)有一個(gè)零點(diǎn),其他三個(gè)區(qū)間均不符合條件. 答案:③ 4.(2010·高考福建卷改編)函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)為________. 解析:由f(x)=0,得或解得x=-3或x=e2,故零點(diǎn)個(gè)數(shù)為2. 答案:2 5.已知函數(shù)f(x)=x是奇函數(shù),g(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí),g(x)=lnx,則函數(shù)y=f(x)·g(x)的圖象大致為________. 解析:∵f(x)是奇函數(shù),g(x)是偶函數(shù),∴f(x)·g(x)是奇函數(shù),故y=f(x)
7、·g(x)圖象關(guān)于原點(diǎn)對(duì)稱. 排除②④, 當(dāng)自變量x從正的趨向零時(shí)f(x)>0,g(x)<0,故f(x)·g(x)<0,故①正確. 答案:① 6.(2010·高考浙江卷改編)已知x0是函數(shù)f(x)=2x+的一個(gè)零點(diǎn),若x1∈(1,x0),x2∈(x0,+∞),則f(x1),f(x2)的符號(hào)為________. 解析: 設(shè)y1=2x,y2=,在同一坐標(biāo)系中作出其圖象,如圖,在(1,x0)內(nèi)y2=的圖象在y1=2x圖象的上方,即>2x1,所以2x1+<0,即f(x1)<0,同理f(x2)>0. 答案:f(x1)<0,f(x2)>0 7.(2011·高考課標(biāo)全國(guó)卷改編)已知函數(shù)y
8、=f(x)的周期為2,當(dāng)x∈[-1,1]時(shí)f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|lg x|的圖象的交點(diǎn)個(gè)數(shù)為________. 解析:如圖,作出圖象可知y=f(x)與y=|lg x|的圖象共有10個(gè)交點(diǎn). 答案:10 8.命題甲:已知函數(shù)f(x)滿足f(1+x)=f(1-x),則f(x)的圖象關(guān)于直線x=1對(duì)稱. 命題乙:函數(shù)f(1+x)與函數(shù)f(1-x)的圖象關(guān)于直線x=1對(duì)稱.則甲、乙命題正確的是________. 解析:可舉實(shí)例說明如f(x)=2x,依次作出函數(shù)f(1+x)與函數(shù)f(1-x)的圖象判斷. 答案:甲 二、解答題 9.設(shè)函數(shù)f(x)=|x2
9、-4x-5|. (1)畫出f(x)圖象; (2)設(shè)A={x|f(x)≥5},B=(-∞,-2)∪[0,4]∪[6,+∞),試判斷集合A、B間關(guān)系; (3)若在區(qū)間[-1,5]上直線y=kx+3k(k≠0)位于f(x)圖象的上方,求k的取值范圍. 解: (1)f(x)= .畫出f(x)圖象如圖所示. (2)不等式f(x)≥5為|x2-4x-5|≥5, 故有x2-4x-5≥5或x2-4x-5≤-5, 即x2-4x-10≥0]14)或x≥2+,解*2得0≤x≤4, 故A=(-∞,2-]∪[0,4]∪[2+,+∞), ∵2->-2,2+<6, 故BA. (3)∵x∈[-1
10、,5]時(shí),x2-4x-5≤0,故|x2-4x-5|=-x2+4x+5, 據(jù)題意kx+3k>-x2+4x+5,當(dāng)x∈[-1,5]時(shí)恒成立, 即k>在[-1,5]上恒成立, 設(shè)g(x)=,只要求出g(x)在[-1,5]上的最大值, 設(shè)t=x+3,則t∈[2,8],且x=t-3, ∴g(t)==-(t+)+10. 故當(dāng)t=4時(shí),g(t)max=2. ∴k>2. 10.設(shè)函數(shù)f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b. (1)求證:a>0且-3<<-; (2)求證:f(x)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn); (3)若函數(shù)f(x)的兩個(gè)零點(diǎn)在區(qū)間[m,n]內(nèi),求n
11、-m的最小值. 解:(1)證明:∵f(1)=-,∴a+b+c=-,故3a+2b+2c=0. * 又∵3a>2c>2b,∴3a>0即a>0. 又由*得2c=-3a-2b,而3a>2c, 故3a>-3a-2b,∴>-3. 又2c>2b,∴-3a-2b>2b,∴<-. 故有-3<<-. (2)證明:∵f(0)=c,f(1)=-, ∴①若c>0,則f(0)f(1)=-<0,可知f(x)在(0,1)內(nèi)有零點(diǎn),從而f(x)在(0,2)內(nèi)有零點(diǎn); ②若c<0,f(2)=4a+2b+c=4a-3a-2c+c=a-c>0而f(1)=-<0,故f(1)f(2)<0,可知f(x)在(1,2)內(nèi)至少
12、有一個(gè)零點(diǎn). (3)設(shè)x1,x2是f(x)的兩個(gè)零點(diǎn),則x1+x2=-,x1x2=, ∴|x1-x2|2=(x1+x2)2-4x1x2=()2-=()2-=()2+4()+6. 令t=,由(1)可知t∈(-3,-), 于是|x1-x2|2=t2+4t+6=(t+2)2+2, ∴|x1-x2|2<. 于是n-m≥|x1-x2|≥, ∴n-m的最小值為. [B級(jí) 能力提升] 一、填空題 1.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是________. 解析: 函數(shù)f(x)= 的圖象如圖所示, 該函數(shù)的圖象與直線y=m有三個(gè)交點(diǎn)時(shí)m
13、∈(0,1),此時(shí)函數(shù)g(x)=f(x)-m有3個(gè)零點(diǎn).
答案:(0,1)
2.若二次函數(shù)f(x)=x2+2mx+2m+1的兩個(gè)零點(diǎn)均在(0,1)內(nèi),則實(shí)數(shù)m的取值范圍是________.
解析:若拋物線與x軸交點(diǎn)落在區(qū)間(0,1)內(nèi),
則?
所以- 14、=2sin πt的圖象.
由圖可知兩函數(shù)圖象在上共有8個(gè)交點(diǎn),且這8個(gè)交點(diǎn)兩兩關(guān)于原點(diǎn)對(duì)稱.
因此這8個(gè)交點(diǎn)的橫坐標(biāo)的和為0,即t1+t2+…+t8=0.
也就是1-x1+1-x2+…+1-x8=0,
因此x1+x2+…+x8=8.
答案:8
4.設(shè)m,k為整數(shù),方程mx2-kx+2=0在區(qū)間內(nèi)有兩個(gè)不同的根,則m+k的最小值為________.
解析:方程mx2-kx+2=0在區(qū)間內(nèi)有兩個(gè)不同的根可轉(zhuǎn)化為二次函數(shù)f=mx2-kx+2在區(qū)間上有兩個(gè)不同的零點(diǎn).
∵f=2,故需滿足?
將k看做函數(shù)值,m看做自變量,畫出可行域如圖陰影部分所示,因?yàn)閙,k均為整數(shù),結(jié)合可行域可 15、知k=7,m=6時(shí),m+k最小,最小值為13.
答案:13
二、解答題
5.已知f(x)是二次函數(shù),不等式f(x)<0的解集是(0,5),且f(x)在[-1,4]上最大值為12.
(1)求f(x)的解析式;
(2)是否存在m∈N,使函數(shù)g(x)=f(x)+,在(m,m+1)內(nèi)有且只有兩個(gè)零點(diǎn),若存在,求出m之值,若不存在,說明理由.
解:(1)設(shè)f(x)=ax(x-5)(a>0),
對(duì)稱軸為x=,故f(x)在[-1,4]上最大值為f(-1)=6a,
∴a=2,故f(x)=2x2-10x.
(2)據(jù)題意,方程2x2-10x+=0在(m,m+1)內(nèi)有兩個(gè)不同實(shí)根(m∈N),
16、
即方程2x3-10x2+37=0在(m,m+1)(m∈N)內(nèi)有兩個(gè)不同實(shí)根.
設(shè)h(x)=2x3-10x2+37,
則h′(x)=6x2-20x=2x(3x-10),
令h′(x)=0,則x1=0,x2=.
x
(-∞,0)
0
h′(x)
+
-
+
h(x)
↗
↘
↗
又h=-<0,h(3)=1>0,h(4)=5>0
故h(x)在和內(nèi)各有一零點(diǎn),
∴g(x)在(3,4)內(nèi)有且只有兩個(gè)零點(diǎn),
故存在滿足條件的m=3.
6.m為何值時(shí),f(x)=x2+2mx+3m+4.
(1)有且僅有一個(gè)零點(diǎn);
(2)有兩個(gè)零點(diǎn)且均比- 17、1大;
(3)若f(x)有一個(gè)零點(diǎn)x∈(0,1), 求m的取值范圍.
解:(1)若函數(shù)f(x)=x2+2mx+3m+4有且僅有一個(gè)零點(diǎn),則等價(jià)于Δ=4m2-4(3m+4)=0,
即4m2-12m-16=0,即m2-3m-4=0.
解得m=4或m=-1.
(2)法一:方程思想.
若f(x)有兩個(gè)零點(diǎn)且均比-1大,
設(shè)兩個(gè)零點(diǎn)分別為x1,x2,
則x1+x2=-2m,x1·x2=3m+4,
故只需
??
故-5<m<-1,∴m的取值范圍是{m|-5<m<-1}.
法二:函數(shù)思想.
若f(x)有兩個(gè)零點(diǎn)且均比-1大,結(jié)合二次函數(shù)圖象可知只需滿足?
?故-5<m<-1,
∴m的取值范圍是{m|-5<m<-1}.
(3)若f(x)只有一個(gè)零點(diǎn)x∈(0,1),
則,即,方程無解.
若f(x)有兩個(gè)零點(diǎn),其中有一個(gè)零點(diǎn)x∈(0,1),
則f(0)f(1)<0,即(3m+4)(5m+5)<0,
∴-<m<-1.
∴m的取值范圍為{m|-<m<-1}.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國(guó)人民警察節(jié)(筑牢忠誠(chéng)警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國(guó)企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國(guó)青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走